Computer model of two-dimensional solute transport and dispersion in ground water

Techniques of Water-Resources Investigations 07-C2
By:  and 

Links

Abstract

This report presents a model that simulates solute transport in flowing ground water. The model is both general and flexible in that it can be applied to a wide range of problem types. It is applicable to one- or two-dimensional problems involving steady-state or transient flow. The model computes changes in concentration over time caused by the processes of convective transport, hydrodynamic dispersion, and mixing (or dilution) from fluid sources. The model assumes that the solute is non-reactive and that gradients of fluid density, viscosity, and temperature do not affect the velocity distribution. However, the aquifer may be heterogeneous and (or) anisotropic. The model couples the ground-water flow equation with the solute-transport equation. The digital computer program uses an alternating-direction implicit procedure to solve a finite-difference approximation to the ground-water flow equation, and it uses the method of characteristics to solve the solute-transport equation. The latter uses a particle- tracking procedure to represent convective transport and a two-step explicit procedure to solve a finite-difference equation that describes the effects of hydrodynamic dispersion, fluid sources and sinks, and divergence of velocity. This explicit procedure has several stability criteria, but the consequent time-step limitations are automatically determined by the program. The report includes a listing of the computer program, which is written in FORTRAN IV and contains about 2,000 lines. The model is based on a rectangular, block-centered, finite difference grid. It allows the specification of any number of injection or withdrawal wells and of spatially varying diffuse recharge or discharge, saturated thickness, transmissivity, boundary conditions, and initial heads and concentrations. The program also permits the designation of up to five nodes as observation points, for which a summary table of head and concentration versus time is printed at the end of the calculations. The data input formats for the model require three data cards and from seven to nine data sets to describe the aquifer properties, boundaries, and stresses. The accuracy of the model was evaluated for two idealized problems for which analytical solutions could be obtained. In the case of one-dimensional flow the agreement was nearly exact, but in the case of plane radial flow a small amount of numerical dispersion occurred. An analysis of several test problems indicates that the error in the mass balance will be generally less than 10 percent. The test problems demonstrated that the accuracy and precision of the numerical solution is sensitive to the initial number of particles placed in each cell and to the size of the time increment, as determined by the stability criteria. Mass balance errors are commonly the greatest during the first several time increments, but tend to decrease and stabilize with time.
Publication type Report
Publication Subtype USGS Numbered Series
Title Computer model of two-dimensional solute transport and dispersion in ground water
Series title Techniques of Water-Resources Investigations
Series number 07-C2
DOI 10.3133/twri07C2
Edition -
Year Published 1978
Language ENGLISH
Publisher U.S. Govt. Print. Off.,
Description vi, 90 p. :ill. ; 26 cm. Reprinted in 1984.
Google Analytic Metrics Metrics page
Additional publication details