During September 1999, the U.S. Geological Survey made 10 two-dimensional direct-current resistivity profile surveys in the west parking lot and landfill 3 areas of Air Force Plant 4, Fort Worth, Texas, to identify subsurface areas of anomalously high or low resistivity that could indicate potential contamination, contaminant pathways, or anthropogenic structures. Six of the 10 surveys (transects) were in the west parking lot. Each of the inverted sections of these transects had anomalously high resistivities in the terrace alluvium/fill (the surficial subsurface layer) that probably were caused by highly resistive fill material. In addition, each of these transects had anomalously low resistivities in the Walnut Formation (a bedrock layer immediately beneath the alluvium/fill) that could have been caused by saturation of fractures within the Walnut Formation. A high-resistivity anomaly in the central part of the study area probably is associated with pea gravel fill used in construction of a French drain. Another high resistivity anomaly in the west parking lot, slightly southeast of the French drain, could be caused by dense nonaqueous-phase liquid in the Walnut Formation. The inverted sections of the four transects in the landfill 3 area tended to have slightly higher resistivities in both the alluvium/fill and the Walnut Formation than the transects in the west parking lot. The higher resistivities in the alluvium/fill could have been caused by drier conditions in grassy areas relative to conditions in the west parking lot. Higher resistivities in parts of the Walnut Formation also could be a function of drier conditions or variations in the lithology of the Walnut Formation. In addition to the 10 vertical sections, four horizontal sections at 2-meteraltitude intervals show generally increasing resistivity with decreasing altitude that most likely results from the increased influence of the Walnut Formation, which has a higher resistivity than the terrace alluvium/fill.