As part of a study with an overriding goal of providing information that would assist State and Federal agencies in developing screening protocols for managing sediments impounded behind dams that are potential candidates for removal, the U.S Geological Survey determined sediment quantity and quality at three locations: one on the French River and two on Yokum Brook, a tributary to the west branch of the Westfield River. Data collected with a global positioning system, a geographic information system, and sediment-thickness data aided in the creation of sediment maps and the calculation of sediment volumes at Perryville Pond on the French River in Webster, Massachusetts, and at the Silk Mill and Ballou Dams on Yokum Brook in Becket, Massachusetts. From these data the following sediment volumes were determined: Perryville Pond, 71,000 cubic yards, Silk Mill, 1,600 cubic yards, and Ballou, 800 cubic yards. Sediment characteristics were assessed in terms of grain size and concentrations of potentially hazardous organic compounds and metals.
Assessment of the approaches and methods used at study sites indicated that ground-penetrating radar produced data that were extremely difficult and time-consuming to interpret for the three study sites. Because of these difficulties, a steel probe was ultimately used to determine sediment depth and extent for inclusion in the sediment maps. Use of these methods showed that, where sampling sites were accessible, a machine-driven coring device would be preferable to the physically exhausting, manual sediment-coring methods used in this investigation. Enzyme-linked immunosorbent assays were an effective tool for screening large numbers of samples for a range of organic contaminant compounds. An example calculation of the number of samples needed to characterize mean concentrations of contaminants indicated that the number of samples collected for most analytes was adequate; however, additional analyses for lead, copper, silver, arsenic, total petroleum hydrocarbons, and chlordane are needed to meet the criteria determined from the calculations.
Particle-size analysis did not reveal a clear spatial distribution pattern at Perryville Pond. On average, less than 65 percent of each sample was greater in size than very fine sand. The sample with the highest percentage of clay-sized particles (24.3 percent) was collected just upstream from the dam and generally had the highest concentrations of contaminants determined here. In contrast, more than 90 percent of the sediment samples in the Becket impoundments had grain sizes larger than very fine sand; as determined by direct observation, rocks, cobbles, and boulders constituted a substantial amount of the material impounded at Becket. In general, the highest percentages of the finest particles, clays, occurred in association with the highest concentrations of contaminants.
Enzyme-linked immunosorbent assays of the Perryville samples showed the widespread presence of petroleum hydrocarbons (16 out of 26 samples), polycyclic aromatic hydrocarbons (23 out of 26 samples), and chlordane (18 out of 26 samples); polychlorinated biphenyls were detected in five samples from four locations. Neither petroleum hydrocarbons nor polychlorinated biphenyls were detected at Becket, and chlordane was detected in only one sample. All 14 Becket samples contained polycyclic aromatic hydrocarbons. Replicate quality-control analyses revealed consistent results between paired samples.
Samples from throughout Perryville Pond contained a number of metals at potentially toxic concentrations. These metals included arsenic, cadmium, copper, lead, nickel, and zinc. At Becket, no metals were found in elevated concentrations.
In general, most of the concentrations of organic compounds and metals detected in Perryville Pond exceeded standards for benthic organisms, but only rarely exceeded standards for human contact. The most highly contaminated samples were