The Illinois River and tributaries, Flint Creek and the Baron Fork, are designated scenic rivers in Oklahoma. Recent phosphorus increases in streams in the basin have resulted in the growth of excess algae, which have limited the aesthetic benefits of water bodies in the basin, especially the Illinois River and Lake Tenkiller. The Oklahoma Water Resources Board has established a standard for total phosphorus not to exceed the 30- day geometric mean concentration of 0.037 milligram per liter in Oklahoma Scenic Rivers. Data from water-quality samples from 1997 to 2001 were used to summarize phosphorus concentrations and estimate phosphorus loads, yields, and flowweighted concentrations in the Illinois River basin.
Phosphorus concentrations in the Illinois River basin generally were significantly greater in runoff-event samples than in base-flow samples. Phosphorus concentrations generally decreased with increasing base flow, from dilution, and increased with runoff, possibly because of phosphorus resuspension, stream bank erosion, and the addition of phosphorus from nonpoint sources.
Estimated mean annual phosphorus loads were greater at the Illinois River stations than at Flint Creek and the Baron Fork. Loads appeared to generally increase with time during 1997-2001 at all stations, but this increase might be partly attributable to the beginning of runoff-event sampling in the basin in July 1999. Base-flow loads at stations on the Illinois River were about 10 times greater than those on the Baron Fork and 5 times greater than those on Flint Creek. Runoff components of the annual total phosphorus load ranged from 58.7 to 96.8 percent from 1997-2001. Base-flow and runoff loads were generally greatest in spring (March through May) or summer (June through August), and were least in fall (September through November).
Total yields of phosphorus ranged from 107 to 797 pounds per year per square mile. Greatest yields were at Flint Creek near Kansas (365 to 797 pounds per year per square mile) and the least yields were at Baron Fork at Eldon (107 to 440 pounds per year per square mile).
Estimated mean flow-weighted concentrations were more than 10 times greater than the median and were consistently greater than the 75th percentile of flow-weighted phosphorus concentrations in samples collected at relatively undeveloped basins of the United States (0.022 milligram per liter and 0.037 milligram per liter, respectively). In addition, flow-weighted phosphorus concentrations in 1999-2001 at all Illinois River stations and at Flint Creek near Kansas were equal to or greater than the 75th percentile of all National Water-Quality Assessment program stations in the United States (0.29 milligram per liter).
The annual average phosphorus load entering Lake Tenkiller was about 577,000 pounds per year, and more than 86 percent of the load was transported to the lake by runoff.The Illinois River and tributaries, Flint Creek and the Baron Fork, are designated scenic rivers in Oklahoma. Recent phosphorus increases in streams in the basin have resulted in the growth of excess algae, which have limited the aesthetic benefits of water bodies in the basin, especially the Illinois River and Lake Tenkiller. The Oklahoma Water Resources Board has established a standard for total phosphorus not to exceed the 30- day geometric mean concentration of 0.037 milligram per liter in Oklahoma Scenic Rivers. Data from water-quality samples from 1997 to 2001 were used to summarize phosphorus concentrations and estimate phosphorus loads, yields, and flowweighted concentrations in the Illinois River basin.
Phosphorus concentrations in the Illinois River basin generally were significantly greater in runoff-event samples than in base-flow samples. Phosphorus concentrations generally decreased with increasing base flow, from dilution, and increased with runoff, possibly because of phosphorus resuspension, stream bank erosion, and the addition of phosphorus