The Chassahowitzka and Homosassa Rivers Florida, are spring-fed streams flowing into the Gulf of Mexico that may be affected by future development of groundwaters. Reduction of streamflow may cause an upstream movement of saltwater in the rivers. Data on flow, tide, and salinity define the physical characteristics of both estuaries. Vertical and longitudinal salinity profiles indicate that the estuaries are reasonably well mixed for the streamflow and high-tide conditions observed during the study. Estimates of the daily maximum upstream locations of the vertically averaged 3-ppt and 5-ppt salinities in the Chassahowitzka River and the vertically averaged 2-ppt and 5-ppt salinities in the Homosassa River are described by multiple linear regression analysis using daily mean streamflow of each river and high-tide stage of the gulf. For the vertically averaged 3-ppt and 2-ppt salinities, the square of the correlation coefficient for the predictive equations ranged from 0.77 to 0.85. For the vertically averaged 5-ppt salinities, the square of the correlation coefficient for the predictive equations ranged from 0.73 to 0.88. Upstream movement of salt-water due to pumping 40 million gal/day from a well field near the headwater springs of the Chassahowitzka and Homosassa Rivers was determined. Pumping at this rate from the Chassahowitzka River would cause a 15% reduction of average spring flow, resulting in an upstream movement of both the vertically averaged 3-ppt and 5-ppt of about 0.3 mile. In the Homosassa River, pumping would cause a 13% reduction of average spring flow, resulting in an upstream movement of both the vertically averaged 2-ppt and 5-ppt salinities of about 0.1 mile. (USGS)