Rill erosion, slumping, and fissuring develop on seepage faces of many sandbars along the Colorado River in the Grand Canyon. These processes, observed at low river stage, are a response to residual head gradients in the sandbars caused by the river-stage fluctuation. Three sandbars were instrumented with sensors for continual monitoring of pore pressure and ground-water temperature within the sandbars and river stage. Two of the sandbars also had tilt sensors to aid in determining the relation between ground-water flow within and out of the sandbars and sandbar deformation. Tilting at sandbar 43.1L occurred on the downward limb of the hydrograph in the absence of scour, indicating slumping or a slump-creep sequence. The deformation was caused by outward-flowing bank storage, oversteepening of the lower part of the slope in the zone of fluctuating river stage by filling, and increased effective stress. At sandbar 172.3L, tilts were probably all related to scour and occurred on the rising limb of a hydrograph. Tilt occurred on April 17, May 7, May 13, June 18, and September 1, 1991. On September 1, the entire face of sandbar 172.3L was scoured. Rill erosion and slumping accompanied by measured tilts continued in reduced magnitude on sandbar 43.1L during interim flows. Thus, reduction in the range of discharge does not eliminate degradation caused by rill erosion, slumping, and fissuring. The importance of the ground-water processes is that they occur on every sandbar and become increasingly important on all sandbars in the absence of sandbar-building flows.