Ground-water resources and water-supply alternatives in the Wawona area of Yosemite National Park, California

Water-Resources Investigations Report 95-4229
By:

Links

Abstract

Planning efforts to implement the 1980 General Management Plan, which recommends relocating park administrative facilities and employee housing from Yosemite Valley in Yosemite National Park, California, have focused on the availability of water at potential relocation sites within the park. Ground-water resources and water-supply alternatives in the Wawona area, one of several potential relocation sites, were evaluated between June 1991 and October 1993.

Ground water flowing from Biledo Spring near the headwaters of Rainier Creek, about 5 miles southeast of Wawona, is probably the most reliable source of good quality ground water for Wawona. A dilute calcium bicarbonate ground water flows from the spring at about 250 gallons per minute. No Giardia was detected in a water sample collected from Biledo Spring in July 1992. The concentration of dissolved 222radon at Biledo Spring was 420 picoCuries per liter, exceeding the primary drinking-water standard of 300 picoCuries per liter proposed by the U.S. Environmental Protection Agency. This concentration, however, was considerably lower than the concentrations of dissolved 222radon measured in ground water at Wawona. The median value for 15 wells sampled at Wawona was 4,500 picoCuries per liter.

Water-quality samples from 45 wells indicate that ground water in the South Fork Merced River valley at Wawona is segregated vertically. Shallow wells produce a dilute calcium sodium bicarbonate water that results from chemical dissolution of minerals as water flows through fractured granitic rock from hillside recharge areas toward the valley floor. Tritium concentrations indicate that ground water in the shallow wells originated as precipitation after the 1960's when testing of atmospheric nuclear devices stopped. Ground water from the deep flowing wells in the valley floor is older sodium calcium chloride water. This older water probably originated either as precipitation during a climatically cooler period or as precipitation from altitudes between 1,400 and 3,700 feet higher than precipitation that recharged the local shallow ground-water-flow system. Chloride and associated cations in the deepground-water-flow system may result from upward leakage of saline ground water or from leaching of saline fluid inclusions in the granitic rocks.

Water-level and pressure-gage measurements for 38 wells in the South Fork Merced River valley also indicate that the ground water in the valley is segregated vertically. Hydraulic head in deep fractures is as much as 160 feet above the valley floor. Vertical hydraulic gradients between the shallow and deep systems are as high as 4.5 feet per foot in one of two test holes drilled for this study. Measurements of in situ stress in the two test holes indicate that the vertical segregation of ground water may be related to pressures in the earth that squeeze horizontal fractures closed at depth. Fractures within a few hundred feet of land surface are poorly connected to fractures deeper beneath the valley.

About 100 privately owned wells currently are in use at Wawona; but, the ground-water-flow system may not be an adequate source of good quality ground water for relocated park facilities. Yields from existing wells are low (median 4-5 gallons per minute) and traditional methods for locating high-yielding wells in fractured rocks have not been successful in this area. Concentrations of dissolved 222radon (median 4,500 picoCuries per liter) are high, and the development of deep ground water could cause deeper saline water to migrate upward into producing wells.

The South Fork Merced River, the primary source of water supply for Wawona, does not meet current demands during late summer and autumn. Data collected between 1958 and 1968 indicate that 25 percent of the time discharge of the South Fork River at Wawona during the dry season (August through October) was less than 2 cubic feet per second-the discharge rate at which the National Park Service is restricted from withdrawing water from the river. the river, however, could be relied on for additional water supply if facilities were constructed to divert and store water during periods of high flow for use later in the year. 

Study Area

Publication type Report
Publication Subtype USGS Numbered Series
Title Ground-water resources and water-supply alternatives in the Wawona area of Yosemite National Park, California
Series title Water-Resources Investigations Report
Series number 95-4229
DOI 10.3133/wri954229
Year Published 1996
Language English
Publisher U.S. Geological Survey
Description vii, 77 p.
Country United States
State California
Other Geospatial Wawona area of Yosemite National Park,
Google Analytic Metrics Metrics page
Additional publication details