Overlay and index methods were derived for rating the unsaturated zone and watershed characteristics for use by the State of North Carolina in assessing more than 11,000 public water-supply wells and approximately 245 public surface-water intakes. The rating of the unsaturated zone and watershed characteristics represents a practical and effective means of assessing part of the inherent vulnerability of water supplies to potential contamination. Factors that influence the inherent vulnerability of the drinking water supply to potential contamination were selected and assigned ratings (on a scale of 1 to 10) to cover the possible range of values in North Carolina. These factors were assigned weights of 1, 2, or 3 to reflect their relative influence on the inherent vulnerability of the drinking water supply. The factor values were obtained from Geographic Information System data layers, and were transformed into grids having 60-meter by 60-meter cells, with each cell being assigned a value.
Identification of factors, the development of ratings for each, and assignment of weights were based on (1) a literature search, which included examination of potential factors and their effects on the drinking water; and (2) consultation with experts in the science and engineering of hydrology, geology, forestry, agriculture, and water management.
Factors selected for rating the inherent vulnerability of the unsaturated zone are vertical hydraulic conductance, land-surface slope, land cover, and land use. Vertical hydraulic conductance is a measure of the capacity of unsaturated material to transmit water. Land-surface slope influences whether precipitation runs off land surfaces or infiltrates into the subsurface. Land cover, the physical overlay of the land surface, influences the amount of precipitation that becomes overland flow or infiltrates into the subsurface. Land use describes activities that occur on the land surface and influence the potential generation of nonpoint-source contamination.
Factors selected for rating the watershed characteristics upstream from surface-water intakes are average annual precipitation, land-surface slope, land cover, land use, and ground-water contribution. The average annual precipitation represents the mass of water that becomes available for transport in a watershed. Land-surface slope, land cover, and land use have similar influences in watersheds as those identified for the unsaturated zone. Ground-water contribution represents the part of streamflow that is derived from ground-water discharge.