Water-discharge, velocity, and slope variations for a 3.7-mile-Iong tidal reach of the Willamette River at Portland, Oreg., were defined from discharge measurements and river stage data collected between July 1962 and January 1965. Observed water discharge during tide-affected flows, during floods, and during backwater from the Columbia River and recorded stages at each end of the river reach were used to determine water discharge from two mathematical models. These models use a finite-difference method to solve the equations of moderately unsteady open-channel streamflow, and discharges are computed by an electronic digital computer.
Discharges computed by using the mathematical models compare satisfactorily with observed discharges, except during the period of backwater from the annual flood of the Columbia River. The flow resistance coefficients used in the models vary with discharge; for one model, the coefficients for discharges above 30,000 cfs (cubic feet per second) are 12 and 24 percent less than the coefficient used for discharges below 30,000 cfs.
Daily mean discharges were determined by use of one mathematical model for approximately two-thirds of the water year, October 1963 through September 1964. Agreement of computed with routed daily mean discharges is fair; above 30,000 cfs, average differences between the two discharges are about 10 percent, and below 30,000 cfs, computed daily discharges are consistently greater (by as much as 25 percent) than routed discharges. The other model was used to compute discharges for the unusually high flood flows of December 1964.