Reactions of aqueous aluminum species at mineral surfaces

Water Supply Paper 1827-F
By:  and 

Links

Abstract

Aqueous aluminum solutions containing 4.5 ? 10 4 molar aluminum in 0.01 molar NaC104 were partly neutralized with NaOH to give OH:A1 mole ratios from 1.40 to 2.76. Measured amounts of montmorillonite, kaolinite, volcanic ash, or feldspathic sand were added to provide an area of inert surface. Reactions that occurred during 100 days of aging were compared with those in similar solutions without added surfaces, studied in earlier work. Adsorption of monomeric species Al(H20)6+3, AlOH(H2O)5+2, and Al(OH)2(H2O 4? on the added surfaces follows a cation exchange mass law equilibrium model, and adsorption is essentially complete in 1 hour. Only minor changes in monomeric aluminum species occurred after that. Rapid adsorption of polynuclear aluminum hydroxide species also occurs and follows the pattern of the Langmuir adsorption isotherm. In the absence of surfaces, the polynuclear ions slowly increase in size and become microcrystalline gibbsite during aging. Electron micrographs showed microcrystalline gibbsite was present or surfaces after aging only 2 days. However, the analytical data suggest this material must have been adsorbed after it had already attained a near-crystalline state. Adsorbed polynuclear aluminum hydroxide species were not extensively converted to microcrystalline gibbsite during 100 days of aging.
Publication type Report
Publication Subtype USGS Numbered Series
Title Reactions of aqueous aluminum species at mineral surfaces
Series title Water Supply Paper
Series number 1827
Chapter F
DOI 10.3133/wsp1827F
Edition -
Year Published 1975
Language ENGLISH
Publisher U.S. Govt. Print. Off.,
Description iv, 48 p. :ill. ;24 cm.
Google Analytic Metrics Metrics page
Additional publication details