Hydrology and surface morphology of the Bonneville Salt Flats and Pilot Valley Playa, Utah
Links
- Document: Report (pdf)
- Superseded Publications:
- Download citation as: RIS | Dublin Core
Abstract
The Bonneville Salt Flats and Pilot Valley are in the western part of the Great Salt Lake Desert in northwest Utah. The areas are separate, though similar, hydrologic basins, and both contain a salt crust. The Bonneville salt crust covered about 40 square miles in the fall of 1976, and the salt crust in Pilot Valley covered 7 square miles. Both areas lack any noticeable surface relief (in 1976, 1.3 feet on the Bonneville salt crust and 0.3 foot on the Pilot Valley salt crust).
The salt crust on the Salt Flats has been used for many years for automobile racing, and brines from shallow lacustrine deposits have been used for the production of potash. In recent years, there has been an apparent conflict between these two major uses of the area as the salt crust has diminished in both thickness and extent. Much of the Bonneville Racetrack has become rougher, and there has also been an increase in the amount of sediment on the south end of the racetrack. The Pilot Valley salt crust and surrounding playa have been largely unused.
Evaporite minerals on the Salt Flats and the Pilot Valley playa are concentrated in three zones: (1) a carbonate zone composed mainly of authigenic clay-size carbonate minerals, (2) a sulfate zone composed mainly of authigenic gypsum, and (3) a chloride zone composed of crystalline halite (the salt crust). Five major types of salt crust were recognized on the Salt Flats, but only one type was observed in Pilot Valley. Geomorphic differences in the salt crust are caused by differences in their hydrologic environments. The salt crusts are dynamic features that are subject to change because of climatic factors and man's activities.
Ground water occurs in three distinct aquifers in much of the western Great Salt Lake Desert: (1) the basin-fill aquifer, which yields water from conglomerate in the lower part of the basin fill, (2) the alluvial-fan aquifer, which yields water from sand and gravel along the western margins of both playas, and (3) the shallow-brine aquifer, which yields water from near-surface carbonate muds and crystalline halite and gypsum. The shallow-brine aquifer is the main source of brine used for the production of potash on the Salt Flats.
Recharge to that part of the shallow-brine aquifer north of Interstate Highway 80 on the Salt Flats is mainly by infiltration of precipitation and wind-driven floods of surface brine. Discharge was mainly by evaporation at the playa surface and withdrawals from brine-collection ditches. Some water was transpired by phreatophytes, and some leaked into the alluvial fan along the western edge of the playa.
Salt-scraping studies indicate that the amount of halite on the Salt Flats is directly related to the amount of recharge through the surface (which causes re-solution of halite) and the amount of evaporation at the surface (which causes crystallization of halite). Evaporation rates through sediment-covered salt crust and the gypsum surface were estimated at between 3x10-4 and 4x10-3 inches per day during the summer and fall of 1976. Evaporation rates through the surface of thick perennial salt crust were much higher.
The concentration of dissolved solids in brine in the shallow-brine aquifer varies, but it generally increases from the edges of the playas toward areas of salt crust. Dissolved-solids concentration in the shallow brine ranges from less than 100,000 to more than 300,000 milligrams per liter on both playas. The increase in salinity toward areas of salt crust reflects the natural direction of brine movement through the aquifer toward the natural discharge area.
On the Salt Flats, the percentages of dissolved potassium chloride and magnesium chloride in the shallow-brine aquifer generally increase from the edge of the playa to- ward the salt crust. The relative enrichment in potassium and magnesium reflects the many years of subsurface drainage toward the main discharge area (the salt crust) prior to man's withdrawal of brine. By artificially extracting brines from the carbonate muds, the percentages of potassium and magnesium have decreased while brine salinity has been maintained by re-solution of the salt crust.
The configuration of the density-corrected potentiometric surface in the fall of 1976 indicates that brine in the shallow-brine aquifer under the Bonneville Racetrack was draining toward brine-collection ditches or a well field to the west. Ground-water divides have no effect on the movement of dissolved salt across the surface in wind-driven floods, and salt in surface brine was carried from the racetrack into the area of influence of the ditches by such surface movement. During 1976 on the Salt Flats, some brine was moving through the shallow-brine aquifer across lease and property boundaries.
An evaluation of suggested remedial measures indicates that none will completely eliminate the conflict between uses or transform the Bonneville Salt Flats to its original state prior to man's activities in the area.
Publication type | Report |
---|---|
Publication Subtype | USGS Numbered Series |
Title | Hydrology and surface morphology of the Bonneville Salt Flats and Pilot Valley Playa, Utah |
Series title | Water Supply Paper |
Series number | 2057 |
DOI | 10.3133/wsp2057 |
Year Published | 1979 |
Language | English |
Publisher | U.S. Government Printing Office |
Publisher location | Washington, D.C. |
Contributing office(s) | Utah Water Science Center |
Description | vii, 107 p. |
Country | United States |
State | Utah |
Other Geospatial | Bonneville Salt Flats, Pilot Valley Playa |
Google Analytic Metrics | Metrics page |