Nutrient and detritus transport in the Apalachicola River, Florida

Water Supply Paper 2196-C
By:  and 

Links

Abstract

The Apalachicola River in northwest Florida flows 172 kilometers southward from Jim Woodruff Dam near the Florida-Georgia border to Apalachicola Bay on the Gulf of Mexico. The basin is composed of two 3,100-squarekilometer subbasins, the Chipola and the Apalachicola. The Apalachicola subbasin includes a 454-square-kilometer bottom-land hardwood flood plain that is relatively undeveloped. The flood plain contains more than 1,500 trees per hectare that annually produce approximately 800 metric tons of litter fall per square kilometer. Spring floods of March and April 1980 carried 35,000 metric tons of particulate organic carbon derived from litter fall into Apalachicola Bay. The estuarine food web is predominantly detrital based and represents an important commercial source of oyster, shrimp, blue crab, and various species of fish. The water budget of the Apalachicola basin is heavily dominated by streamflow. For a 1-year period in 1979-80, 28.6 cubic kilometers of water flowed past the Sumatra gage on the lower river. Eighty percent of this volume flowed into the upper river near Chattahoochee, Fla., and 11 percent was contributed by its major tributary, the Chipola River. Contributions from ground water and overland runoff were less than 10 percent. Streamflow increases downstream were accompanied by equivalent increases in nitrogen and phosphorus transport. The nutrients were released to the river by the flood-plain vegetation, but also were subject to recycling. The increase in the amount of organic carbon transport downstream was greater than streamflow increases. The flood plain is an important source of organic carbon, especially in detrital form. Several methods for measurement of detritus in the river and flood plain were developed and tested. The detritus data from the flood plain added semiquantitative evidence for transport of detritus from the flood plain to the river flow, probably accounting for most of the coarse particulate organic material carried by the river. During the 1-year period of investigation, June 3, 1979, through June 2, 1980, 2.1 ? 10 5 metric tons of organic carbon were transported from the river basin to the bay. Nitrogen and phosphorus transport during the same period amounted to 2.2 ? 10 4 and 1.7 ? 10 3 metric tons, respectively. On an areal basis, it was calculated that the flood plain contributed 70 grams of organic carbon per square meter per year, 0.4 gram of nitrogen per square meter per year, and 0.5 gram of phosphorus per square meter per year. The flood plain acts as a source of detrital carbon, but for the solutes, nutrient release is approximately balanced by nutrient retention.
Publication type Report
Publication Subtype USGS Numbered Series
Title Nutrient and detritus transport in the Apalachicola River, Florida
Series title Water Supply Paper
Series number 2196
Chapter C
DOI 10.3133/wsp2196C
Edition -
Year Published 1984
Language ENGLISH
Publisher U.S. G.P.O.,
Description viii, C62 p. :ill., maps ;28 cm.
Google Analytic Metrics Metrics page
Additional publication details