Link to USGS Home Page

Hydrogeology and Ground-Water-Flow Simulation of the Cave Springs Area, Hixson, Tennessee

U.S. Geological Survey
Water-Resources Investigations Report 02-4091
by Connor J. Haugh

This report is available as a pdf below


Abstract

The ground-water resource in the Cave Springs area is used by the Hixson Utility District as a water supply and is one of the more heavily stressed in the Valley and Ridge Physiographic Province. In 1999, ground-water withdrawals by the Hixson Utility District averaged about 6.4 million gallons per day (Mgal/d) from two pumping centers. The Hixson Utility District has historically withdrawn about 5.8 Mgal/d from wells at Cave Springs. In 1995 to meet increasing demand, an additional well field was developed at Walkers Corner, located about 3 miles northeast of Cave Springs. From 1995 through 2000, pumping from the first production well at Walkers Corner averaged about 1.8 Mgal/d. A second production well at Walkers Corner was approved for use in 2000. Hixson Utility District alternates the use of the two production wells at Walkers Corner except when drought conditions occur when they are used simultaneously. The second production well increased the capacity of the well field by an additional 2 Mgal/d.

The aquifer framework in the study area consists of dense Paleozoic carbonate rocks with secondary permeability that are mantled by thick residual clay-rich regolith in most of the area and by coarse-grained alluvium in the valley of North Chickamauga Creek. Cave Springs, one of the largest springs in Tennessee, derives its flow from conduits in a carbonate rock (karst) aquifer. Production wells at Cave Springs draw water from these conduits. Production wells at Walkers Corner primarily draw water from gravel zones in the regolith near the top of rock. Transmissivities estimated from hydraulic tests conducted across the Cave Springs area span a range from 240 to 900,000 feet squared per day (ft2/d) with a median value of 5,200 ft2/d. Recharge to the aquifer occurs from direct infiltration of precipitation and from losing streams. Most recharge occurs during the winter and spring months.

Computer modeling was used to provide a better understanding of the ground-water-flow system and to simulate the effects of additional ground-water withdrawals. A numerical ground-water-flow model of the ground-water system was constructed and calibrated using MODFLOW 2000. Modeling results indicate that losing streams along the base of the Cumberland Plateau escarpment at the western edge of the study area are an important source of recharge to the ground-water system, supplying about 50 percent of the recharge to the study area. Direct infiltration of precipitation accounts for the remaining recharge to the study area. In 1999, ground-water withdrawals of 6.4 Mgal/d [9.9 cubic feet per second (ft3/s)] equaled about 11 percent of the total simulated ground-water recharge. The remaining ground-water recharge discharges to rivers (48 percent, 41.1 ft3/s), springs (19 percent, 16.8 ft3/s), and Chickamauga Lake (22 percent, 19.0 ft3/s). Drawdown at the Walkers Corner well field in 2000 was about 33 feet at the center of a cone of depression that is elongated along strike. If additional pumping at Walkers Corner increases withdrawals by 2 Mgal/d, simulated drawdown at the Walkers Corner well field increases to about 60 feet and simulated ground-water discharges decrease by amounts of 1.0 ft3/s to Chickamauga Lake, 0.8 ft3/s to North Chickamauga Creek, 0.5 ft3/s to Lick Branch-Rogers Spring drainage, 0.5 ft3/s to Poe Branch, and 0.2 ft3/s to Cave Springs.

Table of Contents

PDF Files

Errata sheet for printed version of report




FirstGov button  Take Pride in America button