This part of DS 781 presents data for part of the acoustic-backscatter map of the Hueneme Canyon and Vicinity map area, California. Backscatter data are provided as separate grids depending on mapping system or processing method. The raster data file is included in "BackscatterA_CSUMB_HuenemeCanyon.zip," which is accessible from
https://pubs.usgs.gov/ds/781/HuenemeCanyon/data_catalog_HuenemeCanyon.html. These data accompany the pamphlet and map sheets of Johnson, S.Y., Dartnell, P., Cochrane, G.R., Golden, N.E., Phillips, E.L., Ritchie, A.C., Kvitek, R.G., Greene, H.G., Krigsman, L.M., Endris, C.A., Clahan, K.B., Sliter, R.W., Wong, F.L., Yoklavich, M.M., and Normark, W.R. (S.Y. Johnson, ed.), 2012, California State Waters Map Series—-Hueneme Canyon and Vicinity, California: U.S. Geological Survey Scientific Investigations Map 3225, 41 p., 12 sheets, scale 1:24,000,
https://pubs.usgs.gov/sim/3225/.
The acoustic-backscatter map of Hueneme Canyon and Vicinity map area, California, was generated from backscatter data collected by California State University, Monterey Bay, Seafloor Mapping Lab (CSUMB) and by the U.S. Geological Survey (USGS). This metadata file describes the acoustic-backscatter data collected by CSUMB. See
https://pubs.usgs.gov/ds/781/HuenemeCanyon/metadata/BackscatterB_USGS_HuenemeCanyon_metadata.txt for a description of the acoustic-backscatter data collected by the USGS. The majority of the acoustic-backscatter data within the Hueneme Canyon and vicinity, California, map area was collected by CSUMB in the summers of 2006 and 2007, using a 244-kHz Reson 8101 multibeam echosounder. Within the acoustic-backscatter imagery, brighter tones indicate higher backscatter intensity, and darker tones indicate lower backscatter intensity. The intensity represents a complex interaction between the acoustic pulse and the seafloor, as well as characteristics within the shallow subsurface, providing a general indication of seafloor texture and composition. Backscatter intensity depends on the acoustic source level; the frequency used to image the seafloor; the grazing angle; the composition and character of the seafloor, including grain size, water content, bulk density, and seafloor roughness; and some biological cover. Harder and rougher bottom types such as rocky outcrops or coarse sediment typically return stronger intensities (high backscatter, lighter tones), whereas softer bottom types such as fine sediment return weaker intensities (low backscatter, darker tones).
These data are intended for science researchers, students, policy makers, and the general public. These data can be used with geographic information systems or other software.
Any use of trade, product, or firm names is for descriptive purposes only and does not imply endorsement by the U.S. Government.
Although this Federal Geographic Data Committee-compliant metadata file is intended to document the data set in nonproprietary form, as well as in Esri format, this metadata file may include some Esri-specific terminology.