Spinning-wing decoys are strong attractants to ducks and inc rease kill rates over traditional decoying methods. However, it is unknown whether all duck species are attracted similarly to spinning-wing decoys and whether the effectiveness of these decoys changes with latitude. We examined the effectiveness of spinning-wing decoys for 9 species of dabbling ducks during 545 experimental hunts in California (1999-2000), Minnesota (2002), Manitoba (2001-2002), Nebraska (2000-2002), Missouri (2000-2001), and Arkansas (2001-2003). During each experimental hunt, we systematically alternated between 2 paired decoy treatments every 15-30 min (depending on study site): traditional decoys only and traditional decoys with a spinning-wing decoy. Overall, 70.2% (n=1,925) of dabbling ducks were harvested (shot and retrieved) when spinning-wing decoys were turned on, ranging from 63.6% (n=187) in Missouri to 76.4% (n=356) in Minnesota. Effectiveness of spinning-wing decoys increased with latitude of study sites. Proportions of ducks shot when spinning-wing decoys were turned on differed among species, from a low of 50.0% (n=8) for cinnamon teal (Anas cyanoptera) to a high of 79.0% (n=119) for American wigeon (A. americana). The probability of being shot when spinning-wing decoys were turned on increased with annual survival rates among species; for example, spinning-wing decoys were more effective for American wigeon and mallard (A. platyrhynchos) than they were for cinnamon teal and American green-winged teal (A. crecca). Effectiveness of spinning-wing decoys did not differ consistently by age or sex of harvested ducks. Our results indicate that the effectiveness of spinning-wing decoys differs among duck species and changes with latitude; thus, consideration of these effects may be warranted when setting harvest regulations and methods of take.