A model-independent tool for evolutionary constrained multi-objective optimization under uncertainty

Environmental Modelling & Software
By: , and 

Metrics

14
Crossref references
Web analytics dashboard Metrics definitions

Links

Abstract

An open-source tool has been developed to facilitate constrained single- and multi-objective optimization under uncertainty (CMOU) analyses. The tool uses the well-known PEST interface protocols to communicate with the underlying forward simulation, making it non-intrusive. The tool contains a built-in parallel run manager to make use of heterogeneous and distributed computing resources. Several popular and well-known evolutionary algorithms are implemented and can be combined with a range of approaches to represent uncertainty in model-derived constraint/objective values. These attributes serve to address the current barrier to adopt advanced CMOU analyses for a wide range of decision-support problems across the environmental modeling spectrum. We demonstrate the capabilities of the CMOU tool on a well-known analytical benchmark problem that we augmented to include uncertainty, as well as on a synthetic density-dependent coastal groundwater management benchmark problem. Both demonstrations highlight the importance of explicitly accounting for uncertainty to convey risk and reliability in pareto-optimal design.

Publication type Article
Publication Subtype Journal Article
Title A model-independent tool for evolutionary constrained multi-objective optimization under uncertainty
Series title Environmental Modelling & Software
DOI 10.1016/j.envsoft.2022.105316
Volume 149
Year Published 2022
Language English
Publisher Elsevier
Contributing office(s) New York Water Science Center, Upper Midwest Water Science Center
Description 105316, 12 p.
Additional publication details