High-flow experimental outcomes to inform Everglades restoration, 2010–22
Links
- Document: Report (5.4 MB pdf) , HTML , XML
- Data Releases:
- USGS Data Release - Biophysical Data for Simulating Overland Flow in the Everglades
- USGS Data Release - High-Flow Field Experiments to Inform Everglades Restoration: Experimental Data 2010 to 2022 (ver. 2.0, October 2023)
- USGS Data Release - High-flow Experimental Outcomes for Everglades Hydraulics and Aquatic Metabolism
- Download citation as: RIS | Dublin Core
Abstract
The Decompartmentalization Physical Model (DPM) was an experimental facility in the central Everglades operated between 2010 and 2022 to release high flows through a levee-enclosed area of degraded ridge and slough wetland that had been isolated from flow for sixty years. The purpose of DPM experimental program was to make measurements before, during, and after seasonal high-flow releases that could help guide the Congressionally authorized Everglades restoration project known as the Decompartmentalization and Sheet Flow Enhancement Project.
The DPM facility was operated by the South Florida Water Management District, with the U.S. Geological Survey (USGS) and several universities participating in experimental design and leading aspects of the research. The USGS research at DPM focused on measuring high-flow hydraulics and its sedimentary and ecological responses in downstream wetlands. USGS investigated interactions between flow and vegetation and microtopography that influenced flow velocity and water depth, bed shear stress, sediment entrainment, and the resulting downstream transport of suspended sediment and fate of particle-associated phosphorus. USGS also investigated high-flow changes in water-column mixing and gas exchange and resulting effects on metabolism of the aquatic ecosystem (primary productivity and respiration). USGS also investigated effects of built structures such as levee gaps that were constructed to reconnect levee-enclosed basins. This report describes the methods and results of the USGS-led data collection at DPM.
The USGS studies at DPM have identified factors that influence effectiveness of restoration, specifically how high-flow releases maximize sheet flow and affect sediment and nutrient dynamics while minimizing undesirable outcomes caused by past management that bypassed wetlands by conveying polluted water through canals to ecologically sensitive downstream areas. The DPM high-flow experiments reconnected the Water Conservation Area 3A and Water Conservation Area 3B basins, and it therefore has become a central feature of the restoration’s Decompartmentalization and Sheet Flow Enhancement Project. DPM’s scientific findings have already influenced the adaptive management of Everglades restoration in guiding elements of the final design and implementation of the Central Everglades Planning Project-South. In addition to serving Everglades restoration, the DPM has the potential to influence similar adaptive management programs throughout the nation’s network of federal and state-managed river corridors, floodplains, and riparian ecosystems.
Suggested Citation
Harvey, J., Choi, J., Larsen, L., Skalak, K., Maglio, M., Quion, K., Swartz, A., Lin, J.T.Y., Gomez-Velez, J., and Schmadel, N., 2024, High-flow experimental outcomes to inform Everglades restoration, 2010–22: U.S. Geological Survey Open-File Report 2024–1063, 72 p., https://doi.org/10.3133/ofr20241063.
ISSN: 2331-1258 (online)
Study Area
Table of Contents
- Acknowledgments
- Abstract
- Introduction
- Field and Laboratory Methods
- Analysis Results
- Lessons Learned
- References Cited
- Appendix 1. Aerial Images of DPM
- Appendix 2. S-152 Culvert Discharge Measurements
Publication type | Report |
---|---|
Publication Subtype | USGS Numbered Series |
Title | High-Flow Experimental Outcomes to Inform Everglades Restoration, 2010–22 |
Series title | Open-File Report |
Series number | 2024-1063 |
DOI | 10.3133/ofr20241063 |
Year Published | 2024 |
Language | English |
Publisher | U.S. Geological Survey |
Publisher location | Reston VA |
Contributing office(s) | WMA - Earth System Processes Division |
Description | Report: xi, 72 p.; 3 Data Releases |
Country | United States |
State | Florida |
Other Geospatial | Everglades |
Online Only (Y/N) | Y |
Google Analytic Metrics | Metrics page |