Rapid onset of unrest at Mount St. Helens on September 23, 2004, initiated an uninterrupted lava-dome-building eruption that continues to the time of writing this overview (spring 2006) for a volume of papers focused on this eruption. About three weeks of intense seismic unrest and localized surface uplift, punctuated by four brief explosions, constituted a ventclearing phase, during which there was a frenzy of media attention and considerable uncertainty regarding the likely course of the eruption. The third week exhibited lessened seismicity and only minor venting of steam and ash, but rapid growth of the uplift, or welt, south of the 1980-86 lava dome proceeded as magma continued to push upward. Crystalrich dacite (~65 weight percent SiO2) lava first appeared at the surface on October 11, 2004, beginning the growth of a complex lava dome of uniform chemical composition accompanied by persistent but low levels of seismicity, rare explosions, low gas emissions, and frequent rockfalls. Petrologic studies suggest that the dome lava is chiefly of 1980s vintage, but with an admixed portion of new dacite. Alternatively, it may derive from a part of the magma chamber not tapped by 1980s eruptions. Regardless, detailed investigations of crystal chemistry, melt inclusions, and isotopes reveal a complex magmatic history. Largely episodic extrusion between 1980 and 1986 produced a relatively symmetrical lava dome composed of stubby lobes. In contrast, continuous extrusion at mean rates of about 5 m3/s in autumn 2004 to <1 m3/s in early 2006 has produced an east-west ridge of three mounds with total volume about equal to that of the old dome. During much of late 2004 to summer 2005, a succession of spines, two recumbent and one steeply sloping and each mantled by striated gouge, grew to nearly 500 m in length in the southeastern sector of the 1980 crater and later disintegrated into two mounds. Since then, growth has been concentrated in the southwestern sector, producing a relatively symmetrical mound with steep gougecovered slabs on its east flank. Throughout the eruption, the position of the extrusive vent has remained more or less fixed. Lack of geodetic evidence for either volume increase or pressure increase in the deep magmatic system since about 1990 and geodetic modeling that can account for only 20 to 30 percent of the 2004-to-present dome volume puzzles geodesists. Better constraints on parameters such as magma-chamber volume, crustal properties, and magma compressibility are needed to improve the models. Development of the welt and the new dome bisected horseshoe-shaped Crater Glacier, which formerly wrapped around three sides of the 1980s dome, and fractured, compressed, and thickened the glacier’s surviving east and west arms. Doubling of ice thickness resulted in increased flow rate and advance of termini, although rapid infiltration of water into the highly porous glacier bed prevented substantial basal sliding. Overall, dome growth and disintegration has removed surprisingly little ice. The outcome of the ongoing eruption remains uncertain, but Mount St. Helens’ varied eruptive history suggests multiple possibilities. One dynamical model and several petrologic investigations regard the current eruption as an extension of 1980s dome building that may persist continuously or episodically for years to come.