Assessment of Water Chemistry of the Coconino Aquifer in Northeastern Arizona

Scientific Investigations Report 2025-5038
Prepared in cooperation with the Hopi Tribe
By:

Links

Acknowledgments

The author would like to acknowledge Celeste Journey, U.S. Geological Survey hydrologist Emeritus, for her statistical expertise. Jon Mason, U.S. Geological Survey hydrologist Emeritus, proposed the initial study. The author also would like to acknowledge the many women and men who have sampled and analyzed groundwater in the area since 1933.

Abstract

The Coconino aquifer was investigated as a potential groundwater resource for the Hopi Tribe and Navajo Nation in northeastern Arizona. Basic groundwater chemistry, including major ions, total dissolved solids, and selected trace metal concentrations, are presented and analyzed to characterize the Coconino aquifer. The geochemical compositions of groundwater are associated with changes in geology and groundwater movement and are compared to drinking-water standards to determine suitable areas for potential groundwater resource development. Dissolved-solids concentrations in much of the Coconino aquifer water were higher than the U.S. Environmental Protection Agency’s secondary drinking-water standard of 500 milligrams per liter (mg/L) due to a buried halite body in the southeastern part of the study area. However, trace metal concentrations were generally low. Groundwater may need to be treated for high dissolved-solids concentrations before it is suitable for use as a resource for the Hopi Tribe and Navajo Nation.

Introduction

The Coconino aquifer is a multiple-aquifer system that extends throughout northeastern Arizona, northwestern New Mexico, southwestern Colorado, and southeastern Utah (fig. 1). In northern Arizona, the Coconino aquifer underlies most of the Navajo Nation and the entirety of the Hopi Reservation. Despite its substantial area, wells drilled into the Coconino aquifer are most common in the southern and eastern extent of the aquifer. The Coconino aquifer is deeply buried elsewhere, likely buried to depths greater than 3,000 feet (ft) in some areas to the north. Total dissolved solids (TDS) concentrations are likely high in the Coconino aquifer water [greater than 2,000 milligrams per liter (mg/L)] in much of these areas (Bills and others, 2007). Shallower, more accessible aquifers overlie the Coconino aquifer in this region, including the Navajo aquifer, the primary water source for the Hopi Tribe and the southwestern Navajo Nation (Mason, 2021). Sustainable water resources for the Hopi Tribe and Navajo Nation are limited due to their location in an arid to semi-arid desert environment with minimal precipitation and groundwater recharge. However, as groundwater demand increases to keep up with population growth, the Coconino aquifer has the potential to serve as a source of water for a larger portion of the Hopi Tribe and Navajo Nation. Increased water production from the regional Coconino aquifer has the potential to provide greater water security to both Tribes.

Most groundwater sites are located along the Interstate-40 corridor, with less located
                     in the tribal lands to the north.
Figure 1.

Approximate extent of the Coconino aquifer, boundaries of the Hopi Reservation and Navajo Nation, and the locations of the Coconino aquifer groundwater sites included in this study, northeastern Arizona. Figure is modified from Robson and Banta (1995).

This report focuses on groundwater chemistry of the Coconino aquifer between Flagstaff, Arizona, and the area just east of Holbrook, Arizona, and from south of the Little Colorado River to the southern end of the Hopi Reservation (fig. 1). Coconino aquifer water users in the study area include the southwestern part of the Navajo Nation and the cities of Flagstaff, Winslow, and Holbrook (including their surrounding communities; Hart and others, 2002). Although previous studies and production from existing wells have shown that the Coconino aquifer can produce large quantities of water (for example, Mann, 1976), less has been done to examine the suitability of the water quality for development throughout the region. Water chemistry is extremely variable in this area, partially due to high dissolved solids from evaporite deposits near the base of the Coconino aquifer in the southeastern part of the study area (Cooley and others, 1969; Mann, 1976). The U.S. Environmental Protection Agency (EPA) has established non-mandatory secondary drinking-water standards of 500 mg/L for TDS. Above this level, water may taste bad and (or) cause staining and corrosion. However, potable drinking water generally has TDS concentrations of less than 3,000 mg/L (U.S. Environmental Protection Agency, 1987; Stanton and others, 2017). The EPA formally defined potential underground sources of drinking water as having a TDS concentration less than 10,000 mg/L (U.S. Environmental Protection Agency, 1987). Although TDS concentrations in some groundwater in the study area far exceed the EPA secondary maximum contaminant level (SMCL) of 500 mg/L, other areas show substantially lower dissolved-solids concentrations (Hoffmann and others, 2006; Bills and others, 2007).

Besides TDS, other constituents, such as major cations and anions (calcium, magnesium, sodium, potassium, sulfate, chloride, and bicarbonate) and trace metals (arsenic, uranium, barium, lead, copper, and fluoride, among others), influence the suitability of groundwater for development. The U.S. Geological Survey (USGS), in cooperation with the Hopi Tribe, led this study to describe the basic groundwater chemistry of the Coconino aquifer. This effort provides information to identify potential areas for groundwater resource development.

Purpose and Scope

The purpose of this report is to describe the basic groundwater chemistry of the Coconino aquifer along the Interstate-40 corridor between Flagstaff, Ariz., and the area just east of Holbrook, Arizona. Specifically, major ion, trace metal, and TDS concentrations are presented and analyzed to identify differing groundwater chemistry in association with changes in geology and groundwater movement, and to compare groundwater chemistry to drinking-water standards to determine suitable areas for potential groundwater-resource development.

Previous Investigations

The hydrogeology and chemistry of the Coconino aquifer in the study area have been described in several previous studies. Darton (1910) compiled some of the first geologic data from the area between Kingman, Arizona, and Albuquerque, New Mexico, to explore groundwater prospects for the Atchison, Topeka, and Santa Fe Railway. Gregory (1916) described the geography, climate, surface water, and groundwater of the Navajo Nation and Hopi Reservations; the hydrogeology in this area was later expanded on by Cooley and others (1969). Harrell and Eckel (1939) presented a comprehensive groundwater study of the Holbrook area, including chemical analyses from 118 wells and springs. Bills and Flynn (2002) and Bills and others (2007) summarized the hydrogeology of the Coconino Plateau. Hart and others (2002) compiled existing Coconino aquifer data from the Little Colorado River Basin to produce a generalized groundwater budget. Hoffmann and others (2006) presented geological, hydrological, and chemical data from the Coconino aquifer near Leupp, Arizona, and Jones and Robinson (2021) presented groundwater levels and basic chemistry of the Coconino aquifer in northeastern Arizona.

Evaporites in the study area also have been explored. Bahr (1962) described evaporite karst features on the Holbrook Anticline. Mann (1976) characterized Coconino aquifer water in southern Navajo County and produced an early delineation of the extent of salt beds. Neal and others (1998, 2013) and Rauzi (2000) described evaporite karst in the Holbrook sedimentary basin. Neal and Colpitts (1997) and Neal and Johnson (2002) described specific Holbrook Basin karst expressions (Richard Lake and McCauley Sinks, respectively).

Description of Study Area

The study area is within the Little Colorado River Basin in the southern part of the Colorado Plateau, specifically between Flagstaff, Arizona, and the area just east of Holbrook, Arizona, and from south of the Little Colorado River to the southern end of the Hopi Reservation (Fenneman and Johnson, 1946; fig. 1). Most of the topography is developed on nearly horizontal sedimentary rocks around 5,000 ft in elevation (Hart and others, 2002). The primary surface feature is the Little Colorado River, which parallels Interstate-40 and discharges into the Colorado River northwest of the study area. The Little Colorado River, along with its tributaries, flows through incised canyons in the Coconino Sandstone. Other local topographic relief is provided by folds and solution-collapse features. More detail will be provided on the solution-collapse features in the “Geology” section of this report.

The climate in the study area is classified as arid to semi-arid (Bills and others, 2007). Average annual precipitation near Winslow was less than 8 inches (in.) from 1991 to 2020 (PRISM Climate Group, 2022). The months with the highest amount of rainfall, July–September, coincide with the North American monsoon (Adams and Comrie, 1997). Mean monthly temperature values from 1991 to 2020 near Winslow were highest in July and August at more than 75 degrees Fahrenheit, with the lowest temperatures in December and January at around 35 degrees Fahrenheit (PRISM Climate Group, 2022).

Geology

The Coconino aquifer is named after the primary water-bearing rock unit within the aquifer, the Coconino Sandstone, but the saturated and hydraulically connected parts of the Kaibab Formation, the Toroweap Formation, the Schnebly Hill Formation, and the upper and middle part of the Supai Formation also constitute part of the Coconino aquifer in the study area (fig. 2; Bills and others, 2000; Bills and Flynn, 2002; Hart and others, 2002; Bills and others, 2007).

Coconino-aquifer strata are above the Lower Supai Formation confining layer and the
                        Redwall-Muav aquifer.
Figure 2.

Generalized stratigraphic section of rock units in the study area and surrounding areas, northeastern Arizona. Modified from Bills and others (2007, fig. 11). Muav Limestone and Bright Angel Shale refer to the Muav Limestone and Bright Angel Shale of the Tonto Group. Thickness ranges for the Tapeats Sandstone and Bright Angel Shale are not noted due to lack of data in the study area.

The Supai Formation ranges in age from Pennsylvanian to Permian and consists of red siltstone and sandstone (Irwin and others, 1971; Blakey, 1990). Divided into three parts, only the upper and middle parts of the Supai Formation are hydraulically connected to the Coconino aquifer; the lower part of the Supai Formation acts as a confining layer for underlying groundwater in the Redwall-Muav aquifer (Bills and others, 2000).

The Hermit Formation overlies the Supai Formation in some areas of northern Arizona. Consisting of red-brown siltstone and sandstone, the Hermit Formation is lithologically similar to the Supai Formation. In much of the study area, the boundary becomes unclear and the Hermit and Supai Formations are indistinguishable. For this reason, the Hermit Formation is usually omitted from stratigraphic columns in this area (Irwin and others, 1971; Blakey, 1990; Bills and others, 2000).

The Permian Schnebly Hill Formation is an important Coconino-aquifer component in the Holbrook Basin, with a thickness as much as 1,700 ft (fig. 2; Blakey, 1990; Bills and others, 2000). The Schnebly Hill Formation is reddish brown to reddish orange and comprises sandstone, mudstone, limestone, and evaporites (Blakey, 1990). East of Holbrook, the Corduroy Member of the Schnebly Hill Formation contains halite and other evaporites of early Permian age as much as 650 ft thick (Blakey, 1990; Conway and Cook, 2013). When present, the Schnebly Hill Formation intertongues with the overlying Coconino Sandstone (Bills and others, 2000; Hoffmann and others, 2006).

The Permian Coconino Sandstone is typically the main water-bearing unit of the aquifer (Hart and others, 2002). The Coconino Sandstone is a tan to white, crossbedded, quartz sandstone of eolian origin (Darton, 1910; Blakey, 1990). In Leupp, geologic logs indicate thicknesses from 300 to 960 ft (Hoffmann and others, 2006). Near Winslow, Coconino Sandstone thickness is about 800 ft (Mann, 1976).

The Permian Toroweap Formation is only known to be present in the western part of the study area. Bills and others (2000; p. 26) describe the formation as beds of “carbonate sandstone, red beds, silty sandstone, siltstone, limestone, and thin layers of gypsum.” The formation is often indistinguishable from Coconino Sandstone, but according to Sorauf and Billingsley (1991), a distinction between the Toroweap Formation and the white, quartz sandstone of the Coconino Sandstone can be observed near Flagstaff to the west of the study area; where indistinct, the Toroweap Formation is often considered to be part of the Coconino Sandstone (Bills and others, 2000).

The Permian Kaibab Formation is often expressed as a light-gray limestone from 10 to 650 ft thick. Sinkholes and depressions formed by dissolution are present on the surface, as well as fractures formed by jointing and faulting in the subsurface (Irwin and others, 1971; Bills and others, 2000).

In parts of the study area where the Coconino aquifer is not exposed, the red to reddish-brown Triassic Moenkopi Formation overlies the aquifer (Mann, 1976). Consisting largely of mudstone and siltstone, the Moenkopi Formation acts as a confining layer when not heavily fractured. In some areas, the Moenkopi Formation can supply small amounts of water to wells (Cooley and others, 1969; Bills and others, 2000). North of the study area, the shallower Navajo, Dakota, and Toreva aquifers are present and often used for water supply (Mason, 2021).

Evaporites

Beds of halite underlie about 3,500 mi2 in the southeastern part of the study area, with a maximum thickness near the center of an aggregate of 655 ft of salt in 1,500 ft of Schnebly Hill Formation strata (fig. 3). Close to the depositional center of the halite, a zone of potash covers about 600 mi2. The potash, consisting of sylvite, carnallite, and polyhalite, is nearly 40 ft thick and overlies the halite (Rauzi, 2000). To the south and southeast, halite transitions into gypsum and anhydrite and extends farther than the halite (Rauzi, 2000, pl. 2).

The halite begins in the southeastern part of the study area and extends outside of
                        the study area. The Holbrook Anticline and surface solution-collapse features are
                        in the southern part of the study area.
Figure 3.

Approximate extent of halite, the Holbrook Anticline, and three surface solution-collapse features—McCauley Sinks, Richard Lake, and an area referred to as “The Sinks,” in northeastern Arizona. Halite extent is from the U.S. Geological Survey (USGS) National Map (https://www.usgs.gov/programs/national-geospatial-program/national-map).

Dissolution of evaporite beds by the movement of Coconino aquifer groundwater has led to numerous solution-collapse features in the study area. Solution-collapse features in evaporite rocks are developed similarly to those in limestone, but the time scale is shorter. Evaporites such as halite and gypsum can form karst features in a matter of days to years due to their high solubility. Evaporite karst features form near the outer edges of a salt deposit (Johnson, 1997). In the study area, the dissolution front is currently migrating to the northeast, and karst features are forming in real time (Bahr, 1962; Johnson, 1997; Neal and others, 1998).

The Holbrook Anticline is present near the southwestern extent of halite, and the axis can be mapped at the surface for more than 60 miles (mi; fig. 3). The northern flank follows a regional dip of about 2 degrees. On the southern side, the regional dip is interrupted and the average dip is about 15 degrees, although some dips can be steeper. Numerous karst sinks are present on the southern flank (Bahr, 1962). More than 500 sinkholes, joints, compression ridges, and other solution-collapse features have been identified along the Holbrook Anticline and the parallel Dry Lake Syncline to the immediate southwest (Mann, 1976; Conway and Cook, 2013). The Holbrook Anticline is not expressed below the salt layer, which may suggest that dissolution is a factor of its formation (Neal and others, 1998).

Just west of the Holbrook Anticline, near the western limits of evaporites of the Schnebly Hill Formation, McCauley Sinks provide a conspicuous karst surface expression (fig. 4). McCauley Sinks include about 50 sinkholes up to 50 meters (m) deep and 100 m in diameter. They appear in three semi-circular “rings” within a 3-kilometer (km) wide depression (Neal and Johnson, 2002). Along with several other, smaller depressions west of the Holbrook Anticline, these structures are related to the dissolution front of the halite and appear similar to breccia pipes on the Colorado Plateau (Neal and Johnson, 2002). However, where these other breccia pipes originate in the Mississippian Redwall Limestone and (or) the Cambrian Muav Limestone of the Tonto Group, the McCauley Sinks and Richard Lake likely originate due to collapse following salt dissolution in the Schnebly Hill Formation. Similar to other karst features in the area, pressure ridges following the general trend of the Holbrook Anticline are present near both structures (Neal and Johnson, 2002). To the southeast of the study location is an area known as “The Sinks,” which includes more than 250 sinkholes, joint fissures, and other collapse features also related to halite dissolution (Neal and others, 1998).

Circular solution-collapse features are arranged concentrically beside Chevelon Canyon.
Figure 4.

McCauley Sinks as seen looking north. Chevelon Canyon is in the background of the photograph. Pressure ridges are present in the foreground of the photograph. Photograph by Jon Mason, U.S. Geological Survey, June 27, 2020.

Groundwater Movement

Groundwater in the Coconino aquifer generally moves northward, parallel to the regional dip of the strata (Mann, 1976; Hart and others, 2002). Most recharge occurs as snowmelt near the Mogollon Rim to the south; rain events are often flashy and contribute to runoff (Mann, 1976). The Coconino aquifer is unconfined in most of the study area. To the north, the Moenkopi Formation creates confined conditions. The age of groundwater in the Coconino aquifer around Flagstaff in the eastern part of the study area has been estimated as modern to about 7,000 years (Bills and others, 2000).

Well yields from Coconino aquifer wells inventoried by previous studies varied substantially in the study area, from a few gallons per minute to about 2,800 gallons per minute (Mann, 1976; Bills and others, 2000; Hoffmann and others, 2006). Although several factors affect well yields, including pump design and formation lithology, Bills and others (2000) suggested that the greatest effect on Coconino aquifer well efficiency probably is due to proximity to faults and fractures.

Jones and Robinson (2021) discussed wells monitored as part of the USGS C-Aquifer Monitoring Program between Flagstaff and Holbrook, Arizona. They found that measured groundwater levels fluctuate seasonally, and suggested that infiltration from surface water from summer monsoon events and spring snowmelt have the potential to influence wells, as does higher rates of pumping in the summer months. Although some monitored wells have shown little change in groundwater levels (for example, USGS site number 351023111062002, near Leupp), others have shown decreasing water-level trends (for example, USGS site number 345023110111401, south of Holbrook, has decreased about 11 ft from 1969 to 2018; Jones and Robinson, 2021; U.S. Geological Survey, 2023).

Approach and Methods

This report assesses the distribution of major ions, trace metals, and total dissolved solids in the Coconino aquifer. Data used in this report were limited to water-chemistry results from well and spring samples available in the USGS National Water Information System (NWIS) database (U.S. Geological Survey, 2023). No new samples were collected as part of this study. Results within this report provide a representation of the groundwater resource in the Coconino aquifer area in relation to potential potable water based on major-ion chemistry, TDS, and selected trace elements.

Data Compilation

The USGS NWIS database was queried to find existing groundwater sites (wells and springs) that had water-chemistry data associated with them. Those groundwater sites with wells screened-in or springs discharging from the Coconino aquifer and having major ion and (or) TDS data were selected for inclusion in this study.

A total of 130 sites with samples dating from 1933 to 2008 were identified (fig. 1; table 1; U.S. Geological Survey, 2023). These sites were generally in proximity to the Little Colorado River and Interstate-40. Few wells are drilled into the Coconino aquifer in Hopi Tribal Lands or Navajo Nation north of Interstate-40. Some wells may be screened in multiple formations, and it is not always clear which unit(s) the well is producing from. The aquifer coded in NWIS is considered to be the producing unit for this study.

Table 1.    

Well and spring locations and selected construction data for Coconino aquifer groundwater sites included in this study, northeastern Arizona (U.S. Geological Survey, 2023).

[ft, feet; bls, below land surface; N/A, not applicable; --, information not available]

USGS site number USGS station name Site
type
Geologic formation well is
completed in (or spring
discharges from)
Well depth
(ft bls)
342526110155501 A-18-20 30CCD Well Coconino Sandstone 145
343149110002701 A-13-22 10CCA Well Coconino Sandstone 260
343225110545001 A-13-13 01DDB2 Well Coconino Sandstone 997
343239110340001 A-13-17 05CAA Well Coconino Sandstone 843
343314111183801 A-14-10 32DBD Well Coconino Sandstone 600
343423111194001 A-14-10 30ACA Well Coconino Sandstone 1,050
343438110155001 A-14-20 30CAA Well Coconino Sandstone 400
343640110353001 A-14-17 18BBB Well Coconino Sandstone 800
343756111154001 A-14-10 02ACB Well Kaibab Formation 420
343914110082601 A-15-21 32ACB Well Coconino Sandstone 430
343918110121301 A-15-21 36BCB Well Coconino Sandstone 340
343950110061201 A-15-21 27DBD Well Coconino Sandstone 816
344058111033101 A-15-12 15DDC Well Coconino Sandstone 780
344104110375201 A-15-16 15DDC Well Coconino Sandstone 900
344221110081801 A-15-21 08DDC Well Coconino Sandstone 400
344239109595701 A-15-22 10DBA Well Coconino Sandstone 300
344303111124301 A-15-11 05BDC Well Coconino Sandstone 800
344349110064201 A-15-21 03BAC1 Well Coconino Sandstone 715
344407110171801 A-16-19 36CCB1 Well Coconino Sandstone 800
344457110065001 A-16-21 27CCD Well Coconino Sandstone 635
344502110261601 A-16-18 28DCB Well Coconino Sandstone 750
344516110320301 A-16-17 27BCA Well Coconino Sandstone 815
344644110023301 A-16-22 17CDC Well Coconino Sandstone 160
344644110024201 A-16-22 17CCD Well Coconino Sandstone 450
344720109585001 A-16-22 14ADB Well Coconino Sandstone 309
344720110135201 A-16-20 16BAC Well Coconino Sandstone 450
344749111051901 A-16-12 09BBB Well Coconino Sandstone 1,000
344757110261201 A-16-18 09ACD1 Well Supai Formation 620
344908110202901 A-16-19 04BBC Well Coconino Sandstone 328
345011110201101 A-17-19 28CCB Well Coconino Sandstone 280
345212110012901 A-17-22 17DDB Well Coconino Sandstone 240
345223110522301 A-17-14 17ADD Well Coconino Sandstone 600
345308110125301 A-17-20 10CAA3 Well Coconino Sandstone 110
345316110170910 A-17-19 12CBD Well Coconino Sandstone 475
345320110144710 A-17-20 08BDB Well Coconino Sandstone 200
345340110193001 A-17-19 04DDC Well Coconino Sandstone 550
345344110165101 A-17-19 01CDA Well Coconino Sandstone 470
345345110175201 A-17-19 02DBC Well Supai Formation 495
345350111015501 A-18-12H35DAD Well Coconino Sandstone 680
345410110153201 A-17-20 06DBA Well Coconino Sandstone 325
345415110200801 A-17-19 04BDB Well Coconino Sandstone 430
345425110562101 A-17-13 02BBA Well Coconino Sandstone 600
345444110192501 A-18-19 33DAD2 Well Coconino Sandstone 410
345500110210301 A-18-19 32BDD Well Coconino Sandstone 500
345519110314201 A-18-17 34ABB Spring Coconino Sandstone N/A
345548110480201 A-18-15 30BCC Well Coconino Sandstone 560
345653110394001 A-18-16 20AAD Spring Coconino Sandstone N/A
345707110552001 A-18-13 13CCD Well Coconino Sandstone 475
345730110483001 A-18-14 13ACC Well Coconino Sandstone 1,000
345730110485001 A-18-14 13BDC Well Coconino Sandstone 900
345746110483701 A-18-14 13BAD Well Coconino Sandstone 1,100
345750110482501 A-18-14 13ABD2 Well Coconino Sandstone 620
345750110482701 A-18-14 13ABD1 Well Coconino Sandstone 315
345750110482801 A-18-14 13ABD3 Well Coconino Sandstone 293
345757110484301 A-18-14 13BAA Well Coconino Sandstone 700
345800111184701 A-18-10 02CCB Spring Kaibab Formation N/A
345821110295101 A-18-17 12CBA Well Coconino Sandstone 330
345840110513001 A-18-14 09AAC Well Coconino Sandstone 450
345859110381801 A-18-16 10CBC2 Spring Coconino Sandstone N/A
345906110383301 A-18-16 10CAC Spring Coconino Sandstone N/A
345910110352001 A-18-17 06CBB2 Well Coconino Sandstone 106
345942110462401 A-18-15 05ABB Well Coconino Sandstone 350
350002110355501 A-19-16 36DDB [Winslow I-40 Well] Well Coconino Sandstone 610
350030110420901 A-19-15 36ABA Well Coconino Sandstone 400
350040110384401 A-19-16 28DDD Well Coconino Sandstone 150
350042110425601 A-19-15 26DDA Well Coconino Sandstone 227
350050110424801 A-19-15 25CBC Well Coconino Sandstone 303
350051110430001 A-19-15 26DAC Well Coconino Sandstone 120
350124110450901 A-19-15 28AAC Well Coconino Sandstone 400
350125110450801 A-19-15 28AAB Well Coconino Sandstone 220
350150111040001 A-19-12H15CBB Well Coconino Sandstone 760
350158110403601 A-19-16 20BCD Well Coconino Sandstone 198
350205110513301 A-19-14 21ACA Well Coconino Sandstone 220
350210110560001 A-19-13 23ABB Well Coconino Sandstone 450
350210111011001 A-19-12H13BAD Well Coconino Sandstone 690
350400111004001 A-19-13 07BBB Well Coconino Sandstone 570
350407110332101 A-19-17 05DDD Well Coconino Sandstone 680
350414110412201 A-19-16 06CAD Well Coconino Sandstone 282
350417110413301 A-19-16 06CDB Well Coconino Sandstone 195
350420110590001 A-19-13 05DAB Well Coconino Sandstone 570
350427110512501 A-19-14 04DAB Well Coconino Sandstone 410
350428110484901 A-19-14 01CAB Well Coconino Sandstone 270
350440110411801 A-19-16 06ACC Well Coconino Sandstone 185
350446110502501 A-19-14 03AAC2 Well Coconino Sandstone 650
350447110502301 A-19-14 03AAC1 Well Coconino Sandstone 800
350450110522001 A-19-14 04BBB Well Coconino Sandstone 600
350451110494901 A-19-14 02BAC Well Coconino Sandstone 727
350518110554801 A-20-13 35DDA Well Coconino Sandstone 400
350538110560401 A-20-13 35BDA Well Coconino Sandstone 400
350600111015001 A-20-12H24CBB Well Coconino Sandstone 640
350618111015601 A-20-12H23ADD Well Coconino Sandstone 650
350637110485401 A-20-14 25B UNSURV Well Coconino Sandstone 320
350653110573801 A-20-13 22CCB Well Coconino Sandstone 350
350700111054001 A-20-12 14CAC Well Coconino Sandstone 650
350706111014701 A-20-12H13CBB [Sunshine Well] Well Coconino Sandstone 1,155
350756111154001 A-20-11 07ADD Well Coconino Sandstone 950
350810111105001 A-20-11 12BAA Well Coconino Sandstone 3,628
350816110531001 A-20-14 17B UNSURV Well Coconino Sandstone 250
350839111005301 A-20-12H01DDA Well Coconino Sandstone 650
350845110540101 A-20-14 07C UNSURV Well Coconino Sandstone 200
350909111165401 A-20-10S01AAA Well Coconino Sandstone 935
350957110562601 05 144-10.76X05.75 [PW-3] Well Coconino Sandstone 1,096
350958110562201 05 144-10.67X05.72(1) Well Coconino Sandstone 1,180
351001110562601 05 144-10.79X05.73 Well Coconino Sandstone 426
351022111061801 05 145-05.92x05.31 [OW-1] Well Coconino Sandstone --
351023111062002 05 145-05.96X05.28 (2) [PW-1A] Well Coconino Sandstone --
351052110491701 05 144-04.07X04.75 Well Coconino Sandstone 440
351053110332501 05 143-03.22X04.73 Well Coconino Sandstone 907
351122111101301 05 145-09.63X04.20 Well Coconino Sandstone 717
351142110563401 05 144-10.91X03.80 Well Coconino Sandstone 253
351144111161201 A-21-11 19BCB Well Coconino Sandstone 935
351214111022101 05 145-02.25X03.18 [OW-2B] Well Coconino Sandstone 1,069
351215111021701 05 145-02.17X03.15 Well Coconino Sandstone 388
351238111084101 05 145-08.18X02.71 Well Coconino Sandstone 717
351442110581601 05 144-12.50X00.37 Well Coconino Sandstone 425
351448111012701 05 145-01.37X00.22 Well Coconino Sandstone 570
351519111120701 05 132-11.42X16.88 Well Supai Formation 1,161
351525111035801 05 132-03.74X16.74 Well Coconino Sandstone 635
351739111001501 05 132-00.32X14.24 Well Kaibab Formation 425
351748110592301 05 131-13.51X13.98 Well Kaibab Formation 200
351749111003401 05 132-00.52X14.00 Well Coconino Sandstone 400
351758111000901 05 132-00.14X13.82 Well Coconino Sandstone 405
351804111060301 05 132-05.70X13.70 Well Coconino Sandstone 391
351815110505001 05 131-05.50X13.50 Well Coconino Sandstone 510
351818110054901 05 132-05.47X13.45 Well Coconino Sandstone 687
351831111054501 05 132-05.41X13.21 Well Coconino Sandstone 582
351930111184801 A-22-10 03ACD Well Supai Formation 2,400
352117111132901 05 132-12.70X10.02 Well Coconino Sandstone 806
352119111132901 05 132-12.70X09.98 Well Coconino Sandstone 716
352226111081401 05 132-07.77X08.69 Well Coconino Sandstone 422
Table 1.    Well and spring locations and selected construction data for Coconino aquifer groundwater sites included in this study, northeastern Arizona (U.S. Geological Survey, 2023).

Most wells used (118) were screened in the Coconino Sandstone (fig. 1). Additionally, four of the spring sites discharge from the Coconino Sandstone where it is exposed in canyon walls along Clear and Chevelon Creeks. Three wells and one spring are sourced by the Kaibab Formation in the western part of the study area. Four wells are screened in the Supai Formation. No wells or springs sourced from the Hermit, Toroweap, or Schnebly Hill Formations were present in NWIS in the study area.

Numerous study sites have been sampled multiple times. When computing the median values from all sites for the parameters of pH, specific conductance, and total dissolved solids, the most recent values from each site were used. In three cases, the date when the most recent sample was collected had two samples collected; in those cases, the average value of the two samples was used in the statistical analysis. Additionally, there were 23 samples with estimated results for TDS that were used in the statistical analysis. When computing the water type for sites with multiple samples the most recent sample collected containing all the constituents necessary to compute water type was used.

Quality Assurance

Water-chemistry samples were analyzed using methods described in Fishman and Friedman (1989), Fishman (1993), and Fishman and others (1994). Major ion data included dissolved calcium, magnesium, sodium, potassium, chloride, sulfate, and bicarbonate (computed from alkalinity or acid-neutralizing capacity). When potassium was not measured, sodium was used by itself in the ion balance and analyses; potassium concentrations are considered minor. In order to validate the dissolved-ion data, the ion balance of samples was checked by converting the concentrations of cations and anions in the sample from milligrams per liter to milliequivalents per liter for comparison. Theoretically, if all ions have been correctly determined, the total milliequivalents per liter of cations should equal the total milliequivalents per liter of anions in a sample (Hem, 1985). Most samples had differences of less than 5 percent between cation and anion concentrations expressed as milliequivalents per liter. Four samples had ion balances with differences from 6 to 12 percent; these samples are included in this study because the percent differences are low, and other unmeasured ions and trace metals may potentially contribute to the ion balances (Hem, 1985). Potassium was not measured in all water samples which undoubtably affected the ion balance of samples where it was missing. However, because potassium is usually a minor constituent of natural waters the omission was considered acceptable. The TDS of groundwater was analyzed using the sum of constituents method (Fishman and Friedman, 1989). Specific conductance, or the ability of a solution to conduct an electric current, is a function of the concentration and charge of the ions (Hem, 1985; Fishman and Friedman, 1989). Specific conductance and TDS from samples used in this study showed a strong relationship as should be expected with an R2 value of 0.98.

Graphical and Statistical Analysis

The geochemical compositions of water-chemistry samples were graphically depicted with stiff and trilinear diagrams (similar to Piper [1944]). Analyses were performed using R statistical software (v.4.2.2; R Core Team, 2022). Water-chemistry data were downloaded from NWIS using the dataRetrieval package (De Cicco and others, 2022), and stiff diagrams and piper diagrams were created using the smwrGraphs package (Lorenz and Diekoff, 2017). Prior to plotting, concentration data, in milligrams per liter, were transformed to milliequivalents per liter. TDS were plotted in ArcMap (v. 10.8.1, Esri, Redlands, California) and interpolated using the “spline with barriers” method.

In addition to the graphical methods described above, principal component analysis (PCA) on the major ion data was performed in Primer 7 (Clarke and others, 2014; v7.0.17, PRIMER-E Ltd., Plymouth, United Kingdom) to investigate associations in the data. PCA was conducted on transformed and normalized major ion data to better understand how the selected factors explained the observed variation among sites (Clarke and others, 2014). Briefly, PCA captures as much of the variability in the original multi-dimensional space as possible within the two axes of the plane. Output from the PCA includes eigenvalues (variances of each principal component axis), eigenvectors (coefficients for the linear combination of input factors that defines the plane), and principal component scores (coordinates of the samples on the PC axes computed using eigenvector coefficients). A percent variance explained (from eigenvalues) is computed to quantify the extent to which the two principal component axes of the plane provide an accurate representation of the true association between the factors in the original multi-dimensional space.

Results

Water chemistry of the Coconino aquifer varied throughout the study area. The pH values for 112 sites ranged from 6.7 to 11.1, with a median of 7.6 (table 2, found at the end of this report). Three sites had samples that exceeded the SMCL range for pH for drinking water (6.5–8.5; U.S. Environmental Protection Agency, 2015). SMCLs are not enforced or considered to cause health effects, but may affect the taste, color, or corrosiveness of water. USGS site number 345757110484301 exceeded the SMCL with 1 pH value of 8.6, although 16 other samples from the site ranged from 7.4 to 8.1. USGS site number 351758111000901 exceeded the SMCL with a pH value of 9.2, and USGS site number 350407110332101 had the highest pH value of the sites with a pH of 11.1. Specific conductance values from 126 sites ranged from 110 to 15,200 microsiemens per centimeter (µS/cm), with a median of 1,220 µS/cm. Total dissolved solids ranged from 199 to 10,400 milligram per liter (mg/L) from 117 sites, with a median of 755 mg/L (table 2, found at the end of this report).

Maximum TDS exceeded the SMCL in about 73 percent of sites with data (85 of 117; fig. 5). TDS was highest (10,400 mg/L) at USGS site number 344407110171801. This 800-ft well is completed in the Coconino Sandstone and is located south of Holbrook in the southeastern part of the study area. Other sites with high TDS (USGS site number 350407110332101, 6,580 mg/L; USGS site number 351815110505001, 5,800 mg/L; USGS site number 351053110332501, 5,470 mg/L; and USGS site number 351052110491701, 5,030 mg/L; figs. 5 and 6) are located north of Winslow (table 2, found at the end of this report; fig. 5).

85 groundwater sites exceed the EPA SMCL of 500 mg/L for total dissolved solids.
Figure 5.

Distribution of the concentration of total dissolved solids (TDS) in Coconino aquifer groundwater samples from 117 sites in the northeastern Arizona study area. Five sites with the highest TDS are labeled with the corresponding U.S. Geological Survey site number.

Groundwater with the highest total dissolved solids is in the southeast and north
                     of the study area. Groundwater with the lowest total dissolved solids is in the southwest
                     of the study area.
Figure 6.

Interpolated total dissolved solids (TDS) and major ion chemistry distribution (U.S. Geological Survey, 2023) in the Coconino aquifer in the northeastern Arizona study area. Not all sites with TDS have major ion data to display. When sites with major ion data were too close together to distinguish, one representative diagram is displayed.

A map of interpolated TDS concentrations was created for the study area (fig. 6). Areas of high TDS include the area northwest of The Sinks and Snowflake in the southeastern part of the study area and a broad area north of Winslow. This broad area is unconstrained by TDS sample data; however, a well drilled in the mid-2000s by the Hopi Tribe at the Village of Moenkopi north of the study area required reverse osmosis treatment for municipal use demonstrating that salinity concentrations are elevated in that area (Jon Mason, oral commun., 2023). Spatial distributions of TDS are consistent with a similar map of the southeastern part of the study area from Mann (1976). Figure 6 also displays water-chemistry stiff diagrams at sites with available data. These stiff diagrams are used to spatially compare ionic composition of water samples (Stiff, 1951). Water-chemistry data were adequate to create stiff diagrams for 111 sites; when sites were too close together to distinguish, a representative diagram from one site is displayed in figure 6.

The chemical composition of groundwater was further characterized based on the ratios of major ions present in the water (Hem, 1985). This classification is typically called the water type. Water type is determined by comparing the relative concentrations in milliequivalents of the cations and anions in water separately. To be classified as a specific water type, there must be a dominant cation and anion each making up more than 50 percent of the total. For example, if calcium makes up more than 50 percent of the cations and bicarbonate makes up more than 50 percent of the anions in the water, it is classified as a calcium-bicarbonate water type (or just calcium-bicarbonate water). If no cations and anions make up more than 50 percent of the total, the water is classified as a mixed water type (Hem, 1985). The water types correspond to areas of a trilinear diagram (fig. 7).

The sites with the highest total dissolved solids are sodium-chloride water.
Figure 7.

Trilinear diagram and water-type classification of groundwater samples in the Coconino aquifer in the study area. The relative size of the circles represents total dissolved-solids concentrations.

Using this method of classification, 42 percent of the sites (47 of 111) have a sodium-chloride water type. These sites correlate with high TDS in the study area, located to the southeast and north of the Little Colorado River (figs. 6, 7, and 8; table 2, found at the end of this report). Another 14 percent (15 of 111) of the sites are a calcium-sulfate water type. About 15 percent (17 of 111) of the sites are considered calcium-bicarbonate water. The calcium-dominated water is mostly located to the west of the study area (fig. 8; table 2, found at the end of this report). The remaining 29 percent (32 of 111) are a mixed water type. They are referred to as calcium-magnesium-chloride sulfate type because combinations of these cations and anions make the majority of the ions (fig. 7; table 2, found at the end of this report).

Sodium-chloride water type dominates the center of the study area; calcium-dominated
                     water types are in the west.
Figure 8.

Groundwater types of sites in the Coconino aquifer in the study area, based on the ratios of major ions present.

The loading plot depicts computed PCA of the normalized major ion data and explains 66 percent of the cumulative variability among the data (fig. 9). The principal component along axis 1 (PC1) accounted for 46.1 percent of variation. The principal component along axis 2 (PC2) accounted for an additional 19.9 percent of variation. Vectors plotted on the PC1 represented a positive loading for bicarbonate and negative loading for all other variables. Vectors plotted on the PC2 represented a positive loading in calcium, magnesium, and sulfate, and a negative loading in sodium (+potassium), chloride, and bicarbonate ions. Additionally, non-sodium-chloride water types plotted along a line defined by the bicarbonate vector on one end to magnesium, calcium, and sulfate on the other end, whereas sodium-chloride water types changed along a different line that included the sodium and chloride vectors.

PC1 along the x axis accounts for most of the variation.
Figure 9.

Principal component analysis (PCA) of major ions in the groundwater sites in the Coconino aquifer in the study area.

Of these major ions, chloride and sulfate have Environmental Protection Agency (EPA) SMCLs that affect drinking water (table 3; U.S. Environmental Protection Agency, 2015). The SMCL for both ions is 250 mg/L; exceedances can cause the water to taste salty. Chloride exceeded the SMCL in 122 samples from 50 sites (about 45 percent of the sites) in the study area. Sulfate exceeded the SMCL in 68 samples from 46 sites (about 41 percent of the sites). Either chloride, sulfate, or both ions exceeded the SMCL in 154 samples from 69 sites (about 62 percent of the sites)

Table 3.    

Ranges of constituents in the study area and corresponding Environmental Protection Agency (EPA) maximum contaminant levels (MCLs), treatment techniques (TT), and (or) secondary maximum contaminant levels (SMCLs; U.S. Environmental Protection Agency, 2015), Coconino aquifer, northeastern Arizona.

[Abbreviations: µg/L, micrograms per liter; mg/L, milligrams per liter; --, not applicable; <, less than]

Constituent Chemical
symbol
No. of sites with
measurement
Range EPA MCL
(or TT*)
EPA SMCL
pH -- 112 6.8–11.1 -- 6.5–8.5
Total dissolved solids -- 117 199–10,400 mg/L -- 500 mg/L
Chloride Cl- 50 0.01–3,980 mg/L -- 250 mg/L
Sulfate SO42- 46 1.3–2,620 mg/L -- 250 mg/L
Arsenic As 22 <1–7 µg/L 10 µg/L --
Barium Ba 22 11.8–262 µg/L 2,000 µg/L
Copper Cu 22 0.32–30 µg/L 1,300 µg/L* 1,000 µg/L
Lead Pb 22 <0.08–30 µg/L 15 µg/L* --
Fluoride F- 126 0–5.4 mg/L 4 mg/L 2 mg/L
Table 3.    Ranges of constituents in the study area and corresponding Environmental Protection Agency (EPA) maximum contaminant levels (MCLs), treatment techniques (TT), and (or) secondary maximum contaminant levels (SMCLs; U.S. Environmental Protection Agency, 2015), Coconino aquifer, northeastern Arizona.

Selected trace metals also were analyzed. Although most sites did not have any data (with the exception of fluoride, which was measured at 126 sites), available data are presented along with EPA regulations (table 3). Only one sample exceeded the EPA maximum contaminant limit (MCL) for any of the trace metals measured. Unlike SMCLs, MCLs are legal limits of constituents in drinking water that are designed to protect human health (U.S. Environmental Protection Agency, 2009). USGS site number 344407110171801, an 800-foot well in the Coconino Sandstone, exceeded the MCL and SMCL for fluoride (MCL is 4 mg/L; SMCL is 2 mg/L; and sample concentration was 5.4 mg/L). Fluoride concentrations for 126 sites ranged from 0 to 5.4 mg/L.

Arsenic, barium, copper, and lead were measured at 22 sites for a total of 38 samples. Arsenic concentrations ranged from less than 1 to 7 µg/L (MCL is 10 µg/L). Barium concentrations ranged from 11.8 to 262 µg/L (MCL is 2,000 µg/L). Copper and lead do not have an MCL, but instead are regulated in water systems by treatment techniques (TT). Treatment techniques do not apply to single elements, but no more than 10 percent of tap water samples can exceed the TT action level, or corrective measures must be used (U.S. Environmental Protection Agency, 2009). Copper concentrations ranged from 0.32 to 30 µg/L (TT action level is 1,300 µg/L). Lead concentrations ranged from less than 0.08 to 30 µg/L (TT action level is 15 µg/L). Uranium concentrations were only measured at two sites near Leupp, Arizona, in 2005, and were 2.45 and 4.60 µg/L (MCL is 30 µg/L).

Discussion

Subsurface deposits of halite in the southeastern part of the study area influence the groundwater chemistry. High TDS, which can occur naturally in groundwater due to the dissolution of rocks, likely results from the solution of halite along the regional groundwater flow path. Sodium-chloride is highly soluble in water but is concentrated in many of the groundwater sites in the study area, suggesting a persistent source.

Despite the salt-dissolution features at McCauley Sinks and Richard Lake, TDS is interpreted to be in a low range for the study area near these features (Neal and Johnson, 2002; fig. 6). This supports Neal and Johnson’s (2002) conclusion that dissolution here may indeed be less active than in the past, as the dissolution front migrates to the northeast. Another hypothesis presented by Neal and Johnson (2002) is that wells are too shallow to penetrate deep groundwater with high TDS. The top of the saltwater zone is variable, and well logs are not always available. Mann (1976) attributes this irregularity to fractures in the siltstone of the Supai Formation beneath the Coconino aquifer.

Other evaporites that are often present along with naturally forming halite can supply additional ions to groundwater (Richter and Kreitler, 1991). Calcium and sulfate in groundwater likely result from dissolution of gypsum (CaSO4 2H20) and anhydrite (CaSO4), which extend beyond the halite bed. Mann (1976) suggested that sodium, sulfate, and chloride in the Coconino aquifer also may be contaminated from the Moenkopi Formation when wells are open in both stratigraphic layers. However, due to the mudstone and siltstone present, the Moenkopi Formation acts as a confining unit unless heavily fractured.

The calcium, magnesium, and bicarbonate present in the west and southwest may be from water moving downward through the carbonate Kaibab Formation (Mann, 1976). Bills and others (2007) recorded low strontium-isotope (87Sr/86Sr) measurements from wells and springs near Flagstaff that indicate inflow interacting with the Kaibab Formation and volcanic rocks.

Potential for Use as Potable Water

High concentrations of TDS in much of the study area affect the quality of Coconino aquifer water for potential potable use. In the southeastern part of the study area, and north of the Little Colorado River, about 73 percent of Coconino aquifer samples contain TDS greater than the SMCL of 500 milligrams per liter (mg/L) up to concentrations greater than 10,000 mg/L. Although this falls into the TDS range that can be potentially remediated, desalination of groundwater for potable use can be costly and energy intensive (Stanton and others, 2017).

Trace metals have not been widely measured, but most concentrations are less than the MCLs for drinking water. Fluoride exceeded the MCL in one sample (table 3). Although both arsenic and uranium samples were less than the MCLs (10 µg/L As and 30 µg/L U), these elements have been a concern for the Navajo Nation and Hopi Tribe. Jones and others (2020) found that both arsenic and uranium exceeded the EPA MCL in western Navajo Nation in unregulated water sources, including around Leupp, Arizona.

Water containing elevated TDS can be used for livestock watering and (or) irrigation in some cases. Irrigation water with specific conductance values ranging from 750 to 1,500 µS/cm may have detrimental effects on sensitive crops, whereas higher specific conductance values may affect many crops (Zaman and others, 2018). Sodium hazard, which describes how sodium affects the soil, and ion toxicity are other potential hurdles.

Less is known about Coconino aquifer water north of the study area on the Hopi Reservation and Navajo Nation. Wells in these areas penetrate the shallower Navajo, Dakota, and Toreva aquifers (Mason, 2021). The Hopi Tribe did drill a single municipal well into the Coconino aquifer at the Village of Moenkopi north of the study area. Water from that well required reverse osmosis treatment demonstrating that salinity concentrations are elevated in that area (Jon Mason, oral commun., 2023). However, to the northeast of the study area, near Arizona’s border with New Mexico, Coconino aquifer water contains less dissolved solids (less than 500 mg/L; U.S. Geological Survey, 2023).

Conclusions

As population and development increase in the arid Hopi Reservation and Navajo Nation of northeastern Arizona, the Coconino aquifer has been considered for development as a supplemental groundwater resource. In cooperation with the Hopi Tribe and analyzing existing groundwater samples collected since 1933, the water chemistry of the Coconino aquifer was characterized to determine its potential suitability as a source of drinking water for the Hopi Tribe and Navajo Nation.

Buried halite bodies in the southeastern part of the study area influence the dissolved-solids concentrations in the area. As groundwater moves along the regional dip to the north, sodium, chloride, and other ions are dissolved and transported through the system. The resulting plume of sodium-chloride groundwater differs from the groundwater to the south and west. Total dissolved solids (TDS), sulfate, and chloride exceed the U.S. Environmental Protection Agency (EPA) secondary maximum contaminant level for taste and odor in many samples. Measured trace metals are less than the EPA maximum contaminant level (MCL), except for one sample of fluoride.

Water chemistry data from this study, indicate that in much of this area, while the aquifer is potentially productive, it will likely need treatment before it is suitable for human consumption. Few Coconino aquifer wells exist north of the study area in the Hopi Reservation and (or) Navajo Nation. Characterizing the groundwater chemistry of the aquifer resource in this area could reveal its suitability for development as a water supply.

Table 2.    

Selected field parameters and water-chemistry data for Coconino aquifer groundwater sites included in this study, northeastern Arizona (U.S. Geological Survey, 2023).

[Sample date: MM/DD/YYYY, month/day/year. Water type: Water type refers to major ion distribution and is only listed if used in the analysis (most recent complete sample). Abbreviations: SC, specific conductance; µS/cm, microsiemens per centimeter; Ca2+ , calcium; Mg+, magnesium; mg/L, milligrams per liter, Na+ + K+, sodium+potassium; SO42-, sulfate; Cl, chloride; HCO-, bicarbonate; TDS, total dissolved solids; --, no data available; E, estimate; <, less than]

USGS site number Sample
date
SC
(µS/cm)
pH Ca2+
(mg/L)
Mg+
(mg/L)
Na+ + K+
(mg/L)
SO42-
(mg/L)
Cl-
(mg/L)
HCO-
(mg/L)
TDS
(mg/L)
Water
type
Arsenic (µg/L) Uranium
(µg/L)
Barium
(µg/L)
Lead
(µg/L)
Copper (µg/L) Fluoride (mg/L)
342526110155501 6/14/1946 2,220 -- 112 53 290 281 470 206 1,330 sodium-chloride -- -- -- -- -- 0.5
343149110002701 9/5/1972 1,060 7.1 150 45 17.2 350 13 289 729 calcium-sulfate -- -- -- -- -- 0.7
343225110545001 5/15/1952 540 -- 62 34 5 12 6 346 -- -- -- -- -- -- -- 0.4
343225110545001 5/11/1966 -- 7.8 60 38 6.7 110 13 226 -- -- -- -- -- -- -- 0.1
343225110545001 8/3/1992 519 7.5 65 31 4.8 1.3 1 352 285 calcium-bicarbonate -- -- -- -- -- <0.1
343239110340001 6/20/1972 499 7.6 56 30 3.3 18 4.1 310 275 calcium-bicarbonate -- -- -- -- -- 0
343314111183801 8/5/1994 540 7.4 63 31 2.3 1.7 1.9 -- 285 -- 3 -- 47 4 2 0.1
343423111194001 8/26/1975 476 -- -- -- -- -- -- -- 265 -- -- -- -- -- -- 0.1
343438110155001 9/21/1972 1,870 7.7 53 29 292.1 90 430 219 1,020 -- -- -- -- -- -- 0.3
343438110155001 8/5/1992 1,840 7.8 53 28 272 84 430 221 990 sodium-chloride -- -- -- -- -- 0.3
343640110353001 7/5/1969 454 -- 63 19 -- 8 9 232 -- -- -- -- -- -- -- 0.3
343640110353001 8/17/2000 450 7.9 54.7 29 4.89 12.1 5.51 -- E 268 -- 7 -- 262 4 3.7 0.11
343756111154001 7/13/1978 640 7.4 85 29 4.9 7.2 12 350 331 calcium-bicarbonate -- -- -- -- -- 0.1
343914110082601 6/11/1958 2,260 7 296 99 130 930 150 30 1,780 calcium-sulfate -- -- -- -- -- 1
343918110121301 9/12/1972 638 7.7 37 13 76.9 50 83 180 371 calcium-magnesium-chloride sulfate -- -- -- -- -- 0.2
343950110061201 1/1/1974 1,080 -- -- -- -- -- -- -- 702 -- -- -- -- -- -- --
344058111033101 6/17/1966 532 7.5 66 33 2.8 26 6 330 308 calcium-bicarbonate -- -- -- -- -- 0
344104110375201 1/1/1966 449 7.8 -- -- -- -- -- -- 252 -- -- -- -- -- -- 0
344104110375201 9/12/2000 410 7.3 49.9 27.5 4.95 13.4 5.04 -- E 246 -- 7 -- 216 <1 E 0.6 0.17
344221110081801 2/14/1934 -- -- 71 31 120* 120 160 252 -- -- -- -- -- -- -- 0.4
344221110081801 6/11/1946 110 -- 71 28 120* 110 160 260 -- calcium-magnesium-chloride sulfate -- -- -- -- -- 0.3
344239109595701 9/5/1972 1,150 8.2 66 74 66.5 350 71 204 733 calcium-sulfate -- -- -- -- -- 0.6
344303111124301 6/22/1966 475 7.5 57 28 4.8 18 6.5 294 274 calcium-bicarbonate -- -- -- -- -- 0
344349110064201 4/1/1974 670 -- -- -- -- -- -- -- 436 -- -- -- -- -- -- --
344407110171801 5/8/1968 15,200 6.8 670 190 2,800 2,620 3,980 276 10,400 sodium-chloride -- -- -- -- -- 5.4
344457110065001 4/1/1974 600 -- -- -- -- -- -- -- 390 -- -- -- -- -- -- --
344502110261601 7/24/1969 5,500 7.9 80 28 944.4 27 1,500 217 2,700 sodium-chloride -- -- -- -- -- 0.4
344516110320301 7/24/1969 4,930 7.9 88 42 913.8 330 1,400 152 2,860 sodium-chloride -- -- -- -- -- 0.2
344644110023301 8/5/1986 1,270 7.2 100 34 100.1 270 140 -- 765 -- <1 -- 19 <10 <10 0.3
344644110024201 5/17/1968 -- 7.2 84 29 83 180 91 236 -- calcium-magnesium-chloride sulfate -- -- -- -- -- 0.6
344644110024201 8/19/1992 1,090 7.8 -- -- -- -- -- -- 661 -- -- -- -- -- -- 0.2
344720109585001 9/12/1972 4,230 7.3 210 51 794 1,600 350 364 3,200 sodium-chloride -- -- -- -- -- 2
344720110135201 6/15/1965 1,110 7.7 72 35 110 120 138 303 -- -- -- -- -- -- -- 0.2
344720110135201 8/5/1986 1,120 7.2 66 37 112.1 130 140 -- 639 -- <1 -- 39 <10 <10 0.3
344720110135201 8/20/1992 1,650 7.8 69 37 111.9 120 140 301 639 calcium-magnesium-chloride sulfate -- -- -- -- -- 0.2
344749111051901 11/10/1933 315 7.5 -- -- -- -- -- -- 205 -- -- -- -- -- -- 0.2
344757110261201 9/6/1972 5,470 8 94 54 1,003.4 370 1,500 179 3,120 sodium-chloride -- -- -- -- -- 0.2
344757110261201 9/14/1995 5,200 8.1 93 50 953.4 340 1,500 -- 3,020 -- -- -- -- -- -- 0.2
344908110202901 6/18/1946 413 -- 82 39 770 273 1,110 225 -- -- -- -- -- -- -- --
344908110202901 4/23/1968 4,190 7.1 78 37 760 240 1,100 236 2,350 sodium-chloride -- -- -- -- -- 0.9
345011110201101 4/24/1968 2,800 6.7 16 11 540 166 700 129 1,500 sodium-chloride -- -- -- -- -- 0.8
345011110201101 8/4/1986 3,500 7.4 70 38 563.2 320 820 -- 1,940 -- <1 -- 31 30 <30 0.6
345212110012901 8/18/1992 6,500 7.8 140 40 1,107.2 250 1,600 204 3,250 sodium-chloride -- -- -- -- -- 0.2
345223110522301 5/3/1966 -- 7.5 78 34 8.7 123 0.1 259 -- calcium-bicarbonate -- -- -- -- -- --
345308110125301 8/5/1986 840 7.4 56 35 59.5 150 69 -- 487 -- <1 -- 27 <10 20 0.4
345316110170910 8/17/1972 1,320 7.4 72 43 142.5 230 180 232 794 calcium-magnesium-chloride sulfate -- -- -- -- -- 0.5
345320110144710 9/12/1972 885 7.7 39 26 102.1 83 130 201 491 calcium-magnesium-chloride sulfate -- -- -- -- -- 0.5
345340110193001 6/5/2007 1,220 7.6 60.3 35.6 134.42 128 168 -- E 673 -- 0.23 -- 24.8 <0.12 E 0.32 0.4
345340110193001 6/19/2008 1,300 7.3 61.2 37.1 138.52 131 178 -- E 687 -- 0.66 -- 24.1 0.118 <1 0.37
345344110165101 8/13/1992 1,160 8 61 37 132.2 170 160 219 680 calcium-magnesium-chloride sulfate -- -- -- -- -- 0.3
345345110175201 1/12/1968 1,140 7.3 55 31 140 114 169 256 651 calcium-magnesium-chloride sulfate -- -- -- -- -- 0.6
345350111015501 5/12/1966 637 7.4 80 34 15 154 9 240 425 -- -- -- -- -- -- 0.3
345350111015501 10/5/1978 650 7.4 71 33 13.2 150 13 220 403 calcium-bicarbonate -- -- -- -- -- 0.2
345350111015501 8/17/1995 635 7.6 73 34 11 140 5.4 -- 390 -- -- -- -- -- -- 0.2
345410110153201 7/24/1968 839 7.4 42 26 84 68 113 198 445 calcium-magnesium-chloride sulfate -- -- -- -- -- 0.4
345415110200801 6/5/2007 1,900 7.5 83 38.6 240.67 204 347 -- E 1060 -- 0.27 -- 20.2 <0.12 0.51 0.4
345425110562101 5/11/1966 626 7.7 75 36 10 128 12 252 398 -- -- -- -- -- -- 0.1
345425110562101 10/19/1978 650 7.5 83 34 12.4 150 19 240 430 calcium-bicarbonate -- -- -- -- -- 0.2
345425110562101 8/16/1995 620 7.6 75 33 10.6 130 7.9 -- 390 -- -- -- -- -- -- 0.2
345444110192501 5/25/1994 1,430 7.5 57 33 182.4 130 260 -- 790 -- <1 -- 27 <1 <1 0.4
345444110192501 5/4/1995 1,500 7.6 59 34 192.6 130 280 -- 826 -- -- -- -- -- -- 0.4
345444110192501 5/7/1996 1,520 7.8 71 36 202.5 190 270 -- 909 -- -- -- -- -- -- 0.4
345444110192501 4/17/1997 1,480 7.5 56.6 32.8 194.49 134 279 -- 822 -- -- -- -- -- -- 0.45
345444110192501 4/9/1998 1,500 7.8 56.5 34.4 203.45 133 289 -- 836 -- -- -- -- -- -- 0.38
345444110192501 6/2/1999 1,550 7.8 56.2 32.1 187.4 127 282 -- 810 -- -- -- -- -- -- 0.35
345444110192501 7/26/2001 1,540 7.6 57 34 202.4 130 290 -- 830 -- -- -- -- -- -- 0.34
345500110210301 8/17/1992 1,290 7.9 64 34 152.2 150 190 262 730 calcium-magnesium-chloride sulfate -- -- -- -- -- 0.2
345519110314201 7/6/2005 4,800 6.9 86.8 58.5 796.63 255 1,280 245 E 2610 -- 1.2 -- 23.1 <0.16 1 0.31
345519110314201 6/23/2006 4,660 7.1 78.7 49.9 769.83 251 1,270 248 2,550 sodium-chloride 1.6 -- 25.4 <0.16 <0.8 0.31
345519110314201 12/1/2010 4,680 7.9 -- -- -- -- -- -- -- -- -- -- -- -- -- --
345519110314201 12/1/2010 4,680 7.9 -- -- -- -- -- -- -- -- -- -- -- -- -- --
345519110314201 9/18/2012 4,730 7.7 -- -- -- -- -- -- -- -- -- -- -- -- -- --
345519110314201 9/19/2017 4,720 7.4 -- -- -- -- -- -- -- -- -- -- -- -- -- --
345519110314201 9/25/2018 4,520 7.6 -- -- -- -- -- -- -- -- -- -- -- -- -- --
345519110314201 9/25/2018 4,520 7.6 -- -- -- -- -- -- -- -- -- -- -- -- -- --
345519110314201 6/18/2019 4,730 7.3 -- -- -- -- -- -- -- -- -- -- -- -- -- --
345548110480201 5/3/1966 -- 7.6 82 41 480 168 745 236 1,630 -- -- -- -- -- -- 0.2
345548110480201 10/19/1978 2,900 7.4 82 38 462.5 170 740 230 1,620 sodium-chloride -- -- -- -- -- 0.2
345653110394001 2/28/2006 2,280 7.5 -- -- -- -- -- -- -- -- -- -- -- -- -- --
345653110394001 6/28/2006 2,300 7.6 53 25.4 372.98 41.2 601 -- E 1230 -- 0.28 -- 85.4 <0.08 0.4 0.15
345653110394001 12/2/2010 2,370 7.8 -- -- -- -- -- -- -- -- -- -- -- -- -- --
345653110394001 9/20/2017 2,320 7.7 -- -- -- -- -- -- -- -- -- -- -- -- -- --
345653110394001 6/19/2019 2,140 7.5 -- -- -- -- -- -- -- -- -- -- -- -- -- --
345653110394001 6/19/2019 2,320 7.5 -- -- -- -- -- -- -- -- -- -- -- -- -- --
345653110394001 6/10/2022 2,320 7.7 -- -- -- -- -- -- -- -- -- -- -- -- -- --
345707110552001 11/20/1933 2,270 7.6 66 41 14 136 21 232 -- sodium-chloride -- -- -- -- -- 0
345730110483001 4/27/1955 -- 7.8 65 35 13* 110 12 246 361 -- -- -- -- -- -- 0
345730110483001 7/13/1955 -- 7.7 64 37 30* 145 16 249 421 -- -- -- -- -- -- 0
345730110483001 11/14/1955 -- 8 62 38 20* 120 16 251 387 -- -- -- -- -- -- 0.1
345730110483001 1/2/1957 -- 7.4 59 39 5* 90 12 254 338 -- -- -- -- -- -- 0.1
345730110483001 6/5/1957 -- 7.7 63 32 2* 70 10 252 308 -- -- -- -- -- -- 0.1
345730110483001 12/6/1957 -- 7.6 64 31 8* 90 16 229 331 -- -- -- -- -- -- 0.1
345730110483001 5/2/1958 -- 7.6 62 33 2* 80 16 229 311 -- -- -- -- -- -- 0.1
345730110483001 1/4/1959 -- 8.1 61 34 7* 60 16 271 318 -- -- -- -- -- -- 0.1
345730110483001 11/17/1959 -- 7.3 66 40 8* 100 20 261 374 -- -- -- -- -- -- 0.1
345730110483001 6/16/1960 -- 7.7 64 40 1* 90 20 249 351 -- -- -- -- -- -- 0.2
345730110483001 2/17/1961 -- 7.6 68 36 26* 120 28 256 422 -- -- -- -- -- -- 0.4
345730110483001 6/3/1963 -- 7.7 84 20 33* 115 24 256 412 -- -- -- -- -- -- 0
345730110483001 10/16/1964 -- 7.6 108 6 37* 112 14 295 433 calcium-bicarbonate -- -- -- -- -- 0.3
345730110483001 10/25/1965 -- 7.6 74 9 133* 215 36 288 609 -- -- -- -- -- -- 0.2
345730110483001 9/17/1901 -- 8 -- -- -- -- -- -- -- -- -- -- -- -- -- 0.1
345730110485001 10/20/1953 -- 7.4 53 38 35* 110 18 268 397 -- -- -- -- -- -- 0
345730110485001 1/8/1955 -- 7.9 64 32 14* 90 16 251 348 -- -- -- -- -- -- 0
345730110485001 4/27/1955 -- 8.1 64 34 22* 120 12 251 380 -- -- -- -- -- -- 0
345730110485001 7/13/1955 -- 7.7 65 36 31* 150 16 242 425 -- -- -- -- -- -- 0
345730110485001 11/14/1955 -- 8.2 61 38 39* 130 12 249 412 -- -- -- -- -- -- 0
345730110485001 1/2/1957 -- 7.7 59 38 4* 90 8 251 333 -- -- -- -- -- -- 0.1
345730110485001 6/5/1957 -- 7.5 66 29 2* 65 14 244 303 -- -- -- -- -- -- 0.1
345730110485001 12/6/1957 -- 7.5 65 30 9* 90 16 229 333 -- -- -- -- -- -- 0.1
345730110485001 5/2/1958 -- 7.7 63 33 3* 80 20 229 318 -- -- -- -- -- -- 0.1
345730110485001 1/4/1959 -- 8.1 62 30 2* 50 16 254 291 -- -- -- -- -- -- 0.1
345730110485001 11/17/1959 -- 7.3 66 37 9* 80 22 271 359 -- -- -- -- -- -- 0.1
345730110485001 6/16/1960 -- 7.6 70 34 1* 92 14 246 -- -- -- -- -- -- -- --
345730110485001 2/17/1961 -- 7.6 68 33 33* 120 18 276 425 -- -- -- -- -- -- 0.3
345730110485001 6/3/1963 -- 7.7 87 16 42* 135 14 261 433 -- -- -- -- -- -- 0
345730110485001 10/16/1964 -- 7.7 118 0 23* 84 16 278 388 -- -- -- -- -- -- 0.3
345730110485001 10/25/1965 -- 7.5 68 11 76* 110 24 281 437 -- -- -- -- -- -- 0.3
345730110485001 3/3/1966 587 7.6 66 36 7.1* 99 11 257 348 -- -- -- -- -- -- 0.2
345730110485001 1/4/1979 570 7.5 68 34 8.9* 110 13 250 370 calcium-bicarbonate -- -- -- -- -- 0.1
345746110483701 1/10/1963 -- 7.6 61 42 64* 106 91 -- 537 -- -- -- -- -- -- 0.3
345746110483701 1/10/1963 -- 7.6 113 12 64* 111 106 249 539 -- -- -- -- -- -- 0.4
345746110483701 10/16/1964 -- 7.6 116 8 152* 100 214 300 748 -- -- -- -- -- -- 0.3
345746110483701 10/25/1965 -- 7.6 76 12 288* 250 254 300 1,030 -- -- -- -- -- -- 0.2
345746110483701 3/1/1966 1,720 8.1 54 54 230 134 360 263 975 -- -- -- -- -- -- 0.2
345746110483701 3/1/1966 1,610 8.2 55 54 200 128 315 260 888 -- -- -- -- -- -- 0.1
345746110483701 3/2/1966 1,490 8 63 49 180 124 290 263 851 sodium-chloride -- -- -- -- -- 0.3
345750110482501 8/22/1953 -- 7.5 68 38 87* 120 124 256 572 -- -- -- -- -- -- 0
345750110482501 8/25/1953 -- 7.5 60 34 79* 110 92 264 524 -- -- -- -- -- -- 0
345750110482501 1/8/1955 -- 7.7 75 29 166* 110 252 237 751 -- -- -- -- -- -- 0
345750110482501 4/27/1955 -- 7.9 75 39 167* 135 258 249 803 -- -- -- -- -- -- 0
345750110482501 8/12/1955 -- 7.9 76 43 169* 120 290 240 822 -- -- -- -- -- -- 0
345750110482501 11/14/1955 -- 8 74 40 228* 140 296 242 902 -- -- -- -- -- -- 0
345750110482501 1/2/1957 -- 7.6 80 37 297* 120 468 246 1,130 -- -- -- -- -- -- 0.1
345750110482501 6/5/1957 -- 7.6 78 38 163* 15 346 242 765 -- -- -- -- -- -- 0.1
345750110482501 12/6/1957 -- 7.6 79 34 171* 140 262 232 808 -- -- -- -- -- -- 0.1
345750110482501 5/2/1958 -- 7.9 77 38 207* 80 372 229 892 -- -- -- -- -- -- 0.1
345750110482501 1/4/1959 -- 8.1 79 34 267* 150 402 232 1,050 -- -- -- -- -- -- 0.1
345750110482501 11/17/1959 -- 7.2 90 39 254* 110 432 256 1,060 -- -- -- -- -- -- 0.4
345750110482501 6/16/1960 -- 7.6 86 41 243* 150 394 239 1,050 -- -- -- -- -- -- -
345750110482501 2/17/1961 -- 7.6 86 40 164* 150 260 256 839 -- -- -- -- -- -- 0.3
345750110482501 6/3/1963 -- 7.8 136 7 331* 155 486 288 1,270 -- -- -- -- -- -- 0
345750110482501 10/16/1964 -- 7.7 135 0 382* 220 500 273 1,380 -- -- -- -- -- -- 0.3
345750110482501 10/25/1965 -- 7.5 98 3 389* 325 390 251 1,340 -- -- -- -- -- -- 0.4
345750110482501 3/2/1966 2,100 8.1 60 45 310 140 500 183 1,150 -- -- -- -- -- -- 0.2
345750110482501 3/3/1966 1,850 7.5 82 44 250 130 410 258 1,040 -- -- -- -- -- -- 0.2
345750110482501 6/13/1989 2,500 7.7 83 39 350* 140 520 -- 1,270 -- <1 -- <100 3 6 0.2
345750110482501 5/1/1990 2,400 7.7 72 35 310* 130 560 -- 1,250 -- -- -- -- -- -- 0.3
345750110482501 7/9/1991 2,300 7.7 73 38 340* 140 500 260 1,230 -- -- -- -- -- -- 0.2
345750110482501 5/21/1992 2,270 7.7 74 44 350* 140 490 255 1,240 sodium-chloride -- -- -- -- -- 0.1
345750110482501 5/5/1993 2,450 -- 80 40 360* 140 570 -- 1,330 -- -- -- -- -- -- 0.3
345750110482501 5/26/1994 2,440 7.6 82 40 360* 130 570 -- 1,320 -- -- -- -- -- -- 0.2
345750110482501 5/4/1995 2,400 7.5 81 40 340* 130 510 -- 1,240 -- -- -- -- -- -- 0.2
345750110482501 5/7/1996 2,340 7.5 74 37 340* 130 510 -- 1,230 -- -- -- -- -- -- 0.2
345750110482501 4/17/1997 2,410 7.7 81.7 36.9 373* 139 615 -- 1,390 -- -- -- -- -- -- 0.17
345750110482501 6/1/1999 2,300 7.7 73.3 35.9 322* 131 528 -- 1,230 -- -- -- -- -- -- 0.18
345750110482501 6/13/2000 2,290 7.7 77 36.7 324* 135 517 -- E 1230 -- -- -- -- -- -- 0.17
345750110482501 9/5/2001 2,350 7.5 81 39 330* 130 490 -- 1,210 -- -- -- -- -- -- 0.2
345750110482501 5/23/2007 1,110 7.8 80.2 36.4 323* 135 526 -- E 1240 -- 0.68 -- 29.2 0.13 1.5 0.2
345750110482501 6/18/2008 2,400 7.6 80 36.2 326* 137 506 -- E 1220 -- 0.79 -- 27 0.352 11.4 0.22
345750110482701 11/21/1933 -- -- 67 37 3.5 105 11 246 -- calcium-bicarbonate -- -- -- -- -- 0
345750110482801 3/2/1966 2,100 8.1 60 45 310 140 500 183 -- -- -- -- -- -- -- 0.2
345750110482801 5/4/1966 1,870 7.6 80 42 250 132 395 262 -- sodium-chloride -- -- -- -- -- 0.1
345757110484301 11/15/1953 -- 7.4 60 40 161* 140 212 276 762 -- -- -- -- -- -- 0
345757110484301 1/8/1955 -- 7.7 70 37 93* 100 246 276 689 -- -- -- -- -- -- 0
345757110484301 4/27/1955 -- 8.1 66 42 140* 125 208 264 714 -- -- -- -- -- -- 0
345757110484301 7/13/1955 -- 7.9 66 49 117* 120 202 254 688 -- -- -- -- -- -- 0
345757110484301 11/14/1955 -- 7.9 63 47 143* 120 226 264 736 -- -- -- -- -- -- 0.2
345757110484301 1/2/1957 -- 7.6 62 44 140* 140 200 256 720 -- -- -- -- -- -- 0.1
345757110484301 6/5/1957 -- 7.5 66 46 169* 95 284 266 798 -- -- -- -- -- -- 0.1
345757110484301 12/6/1957 -- 7.5 76 35 147* 140 216 244 742 -- -- -- -- -- -- 0.1
345757110484301 5/2/1958 -- 7.6 67 38 115* 80 206 242 631 -- -- -- -- -- -- 0.1
345757110484301 1/4/1959 -- 7.9 68 44 193* 160 258 290 872 -- -- -- -- -- -- 0.1
345757110484301 11/17/1959 -- 7.3 70 43 133* 90 226 276 708 -- -- -- -- -- -- 0.5
345757110484301 6/16/1960 -- 7.6 75 44 144* 135 224 271 769 -- -- -- -- -- -- 0.1
345757110484301 2/17/1961 -- 7.7 78 37 158* 140 224 276 793 -- -- -- -- -- -- 0.4
345757110484301 6/3/1963 -- 7.7 101 22 215* 135 312 276 931 -- -- -- -- -- -- 0
345757110484301 10/16/1964 -- 7.7 125 7 202* 120 294 293 903 -- -- -- -- -- -- 0.3
345757110484301 11/17/1964 1,370 8.6 38 44 180 123 280 150 -- -- -- -- -- -- -- 0.2
345757110484301 10/25/1965 -- 7.5 92 10 294* 230 308 288 807 sodium-chloride -- -- -- -- -- 0.3
345800111184701 8/4/1995 530 7.8 54 22 18.4 23 27 -- 307 -- -- -- -- -- -- 0.4
345821110295101 3/3/1970 6,670 -- 320 58 1,100* 830 1,760 164 -- sodium-chloride -- -- -- -- -- 0.7
345840110513001 8/22/1995 570 7.7 67 31 9 98 9 -- 342 -- -- -- -- -- -- 0.2
345859110381801 6/30/2005 6,250 7.2 92.9 65.3 1,148.58 301 1,750 284 E 3500 -- <0.6 -- 23.3 0.25 1.4 0.32
345859110381801 6/28/2006 6,390 7.4 90.6 58.9 1,108.08 296 1,750 248 E 3430 sodium-chloride 0.75 -- 23.4 E 0.18 <1.2 0.32
345859110381801 9/20/2017 6,110 7.2 -- -- -- -- -- -- -- -- -- -- -- -- -- --
345859110381801 6/19/2019 6,040 7.1 -- -- -- -- -- -- -- -- -- -- -- -- -- --
345906110383301 6/30/2005 6,300 7.3 98.3 68.1 1,188.86 299 1,710 280 E 3510 -- <0.6 -- 29 E 0.14 1.4 0.33
345906110383301 6/28/2006 6,180 7.6 89.8 57.2 1,087.97 288 1,680 280 E 3340 sodium-chloride 0.75 -- 28.2 <0.08 E 0.36 0.32
345910110352001 3/8/1967 4,500 7.2 280 39 730 680 1,060 274 2,930 -- -- -- -- -- -- 0.6
345910110352001 8/12/1992 4,650 7.9 80 37 816 220 1,200 282 2,510 sodium-chloride -- -- -- -- -- 0.2
345942110462401 11/20/1933 -- -- 218 63 340 632 510 198 -- -- -- -- -- -- -- 0
345942110462401 3/2/1966 2,080 7.5 78 39 300 140 470 246 -- sodium-chloride -- -- -- -- -- 0.3
350002110355501 6/16/1972 5,870 7.5 150 64 1,007.5 52 1,500 267 3,380 sodium-chloride -- -- -- -- -- 0.2
350030110420901 4/16/1971 2,380 -- 64 26 386* 65 690 -- -- -- -- -- -- -- -- 0.33
350040110384401 6/13/1966 -- -- 105 49 920* 300 1,360 283 -- sodium-chloride -- -- -- -- -- 0.3
350042110425601 2/8/1979 4,400 -- 70 38 773.9 100 1,200 200 2,290 sodium-chloride -- -- -- -- -- 0.2
350050110424801 1/21/1954 -- 7.6 53 38 630 120 920 260 2,040 sodium-chloride -- -- -- -- -- 0.2
350050110424801 8/12/1992 3,500 8.1 58 37 572.4 98 920 -- 1,820 -- -- -- -- -- -- 0.1
350051110430001 1/9/1979 4,500 7.9 64 36 854.5 110 1,300 230 2,490 -- -- -- -- -- -- 0.2
350051110430001 8/12/1992 4,550 8 70 38 802.9 130 1,200 227 2,360 sodium-chloride -- -- -- -- -- 0.1
350124110450901 11/2/1978 2,750 -- 92 34 412.3 170 670 230 1,500 sodium-chloride -- -- -- -- -- 0.2
350125110450801 11/28/1967 2,760 7.5 84 40 430 155 665 244 1,500 -- -- -- -- -- -- 0.4
350125110450801 1/21/1972 2,500 7.8 80 38 373* 110 750 192 -- sodium-chloride -- -- -- -- -- --
350150111040001 6/22/1966 652 7.2 50 49 17 154 12 230 417 calcium-bicarbonate -- -- -- -- -- 0.1
350158110403601 2/27/1979 6,650 7.7 79 60 1212 300 1,800 190 3,550 sodium-chloride -- -- -- -- -- 0.2
350205110513301 11/11/1933 -- -- 79 47 240 135 392 264 -- -- -- -- -- -- -- 0
350205110513301 5/11/1966 1,890 7.3 73 47 260 135 413 265 -- -- -- -- -- -- -- 0.1
350205110513301 10/5/1978 1,880 7.3 76 42 241.9 150 390 250 1,030 calcium-bicarbonate -- -- -- -- -- 0.2
350210110560001 6/18/1966 512 8 -- -- -- -- -- -- 309 -- -- -- -- -- -- 0.2
350210110560001 11/28/1967 814 7.4 80 38 27* 123 60 248 465 calcium-bicarbonate -- -- -- -- -- 0.4
350210111011001 11/1/1966 992 7.7 103 54 46 358 34 194 706 -- -- -- -- -- -- 0.3
350210111011001 6/22/1978 950 7.4 110 49 38.8 320 37 190 660 -- -- -- -- -- -- 0.2
350210111011001 8/10/1992 1,000 7.8 110 47 39.6 340 37 181 674 calcium-sulfate -- -- -- -- -- <0.1
350400111004001 11/20/1933 -- -- 94 44 16 226 21 224 512 -- -- -- -- -- -- 0
350400111004001 6/10/1966 778 7.5 91 40 18 205 21 230 502 calcium-magnesium-chloride sulfate -- -- -- -- -- 0.2
350400111004001 8/2/1995 720 7.9 72 35 23.3 200 20 -- 435 -- -- -- -- -- -- 0.1
350407110332101 5/2/1966 12,100 11.1 -- -- -- -- -- -- 6,580 -- -- -- -- -- -- 0.5
350414110412201 4/30/1965 3,390 7.4 57 26 620 200 840 254 2,200 sodium-chloride -- -- -- -- -- 0.7
350417110413301 4/30/1965 3,370 7.6 51 27 620 190 840 246 2,190 sodium-chloride -- -- -- -- -- 0.6
350420110590001 6/18/1966 805 7.5 101 34 28 212 29 236 537 calcium-magnesium-chloride sulfate -- -- -- -- -- 0.3
350427110512501 3/8/1954 1,420 -- 76 42 160 132 250 258 798 sodium-chloride -- -- -- -- -- 0.6
350428110484901 10/11/1965 3,400 7.9 100 42 584.9 224 898 231 1,970 -- -- -- -- -- -- 0.1
350428110484901 9/21/1966 3,800 7.2 158 50 574* 328 930 238 2,170 sodium-chloride -- -- -- -- -- 0.2
350428110484901 8/16/1995 3,300 7.6 70 44 551.8 160 840 -- 1,800 -- -- -- -- -- -- 0.2
350440110411801 4/30/1965 2,560 7.6 78 25 430 160 595 272 -- sodium-chloride -- -- -- -- -- 0.6
350446110502501 8/22/2006 2,870 8.1 75.5 35.6 429.99 145 698 239 1,510 sodium-chloride 1.2 -- 28.8 1.28 2.3 0.19
350447110502301 10/25/1978 2,850 7.5 84 38 462.6 160 760 240 1,640 sodium-chloride -- -- -- -- -- 0.2
350450110522001 8/19/1966 1,340 7.5 78 40 160 153 227 264 801 -- -- -- -- -- -- --
350450110522001 10/30/1978 1,300 -- 68 37 161.8 140 240 250 783 sodium-chloride type -- -- -- -- -- 0.2
350451110494901 8/21/1954 2,800 7.8 74.4 41.8 550 175 830 244 -- -- -- -- -- -- -- 0.1
350451110494901 11/3/1958 2,810 7.3 76 39 460 152 705 241 1,560 -- -- -- -- -- -- 0.4
350451110494901 11/13/1958 2,810 7.6 76 38 460 146 705 243 1,560 sodium-chloride -- -- -- -- -- 0.3
350518110554801 11/20/1933 750 -- 78 43 33 157 63 232 488 -- -- -- -- -- -- 0
350518110554801 3/12/1953 808 -- 78 40 33 143 64 233 -- -- -- -- -- -- -- 0.2
350518110554801 5/12/1966 799 7.6 76 40 36 147 62 236 490 calcium-magnesium-chloride sulfate -- -- -- -- -- 0.1
350538110560401 12/5/1978 750 7.5 88 34 38.7 170 62 210 508 calcium-magnesium-chloride sulfate -- -- -- -- -- 0.2
350600111015001 7/8/1946 891 -- 105 45 31 280 26 225 600 -- -- -- -- -- -- 0
350600111015001 5/1/1966 890 7.5 106 44 30 281 24 224 608 calcium-sulfate -- -- -- -- -- 0.2
350618111015601 8/10/1992 880 7.8 110 42 22.5 270 25 206 584 calcium-sulfate -- -- -- -- -- < 0.1
350637110485401 2/26/1934 3,510 -- 87 46 720 176 1,120 262 2,280 -- -- -- -- -- -- 0
350637110485401 12/5/1978 3,600 7.8 36 23 643.9 170 1,000 40 1,890 sodium-chloride -- -- -- -- -- 0.2
350653110573801 5/11/1966 975 7.6 87 42 63 193 100 223 -- calcium-magnesium-chloride sulfate -- -- -- -- -- 0.1
350700111054001 9/18/1967 407 7.6 55 20 2.3 7 2.5 264 231 calcium-bicarbonate -- -- -- -- -- 0.1
350700111054001 8/2/1995 410 7.7 49 21 4.8 10 1.4 -- 225 -- -- -- -- -- -- 0.1
350706111014701 11/20/1933 -- -- 108 50 25 295 26 226 -- -- -- -- -- -- -- 0
350706111014701 3/3/1953 859 -- 98 47 20 269 22 207 -- -- -- -- -- -- -- 0.3
350706111014701 10/12/1978 850 7.6 89 41 26.7 240 23 200 529 -- -- -- -- -- -- 0.2
350706111014701 2/28/2005 860 7.5 107 45.5 27.84 265 21.7 217 587 -- 0.5 -- 12.6 0.101 1.1 0.23
350706111014701 2/28/2005 856 7.5 106 44.9 27.78 265 21.6 207 E 582 calcium-sulfate 0.5 -- 12.4 E 0.075 1 0.22
350756111154001 9/18/1967 607 7.4 56 33 16 126 23 178 354 -- -- -- -- -- -- 0.2
350756111154001 7/12/1978 600 7.8 58 31 23 120 22 170 352 calcium-magnesium-chloride sulfate -- -- -- -- -- 0.2
350810111105001 9/18/1967 1,080 7.2 101 58 35 345 51 164 692 calcium-sulfate -- -- -- -- -- 0.2
350816110531001 1/3/1979 1,220 7.8 95 47 112.5 190 180 240 755 calcium-magnesium-chloride sulfate -- -- -- -- -- 0.1
350839111005301 5/12/1966 832 7.5 86 45 36 253 36 198 565 calcium-sulfate -- -- -- -- -- 0.1
350845110540101 5/11/1966 1,360 7.5 98 50 110 225 189 236 800 -- -- -- -- -- -- 0
350845110540101 12/5/1978 1,300 7.5 79 46 122.5 250 220 170 806 calcium-magnesium-chloride sulfate -- -- -- -- -- 0.1
350909111165401 9/18/1967 454 7.5 48 27 3.9 32 8 236 251 -- -- -- -- -- -- 0.2
350909111165401 7/12/1978 450 7.4 44 27 9.7 45 7.6 210 254 calcium-bicarbonate -- -- -- -- -- 0.2
350957110562601 2/9/2005 1,230 8.3 88.6 43.5 120.15 267 125 217 767 -- 1.3 -- 25.3 0.082 2.5 0.32
350957110562601 2/24/2005 1,160 7.9 102 52.8 77.53 250 123 232 E 734 -- 0.4 -- 16.9 E 0.04 1.3 0.25
350957110562601 2/24/2005 1,160 7.8 104 53.5 79.87 251 123 220 734 calcium-magnesium-chloride sulfate 0.5 -- 19.1 <0.08 1.1 0.26
350957110562601 3/23/2005 1,180 7.3 106 55.1 75.08 247 121 -- E 742 -- <2 2.45 16.5 E 0.052 <2 0.25
350958110562201 2/9/2005 1,200 7.7 107 50.7 82.6 253 129 216 742 calcium-magnesium-chloride sulfate 1 -- 15 0.08 2.4 0.23
351001110562601 5/11/1954 1,170 -- 100 45 85 260 130 220 736 -- -- -- -- -- -- 0.2
351001110562601 6/6/1973 1,180 7.9 100 44 82.4 280 130 200 760 calcium-magnesium-chloride sulfate -- -- -- -- -- 0.35
351022111061801 2/21/2005 1,180 8.1 122 56.7 58.82 385 64.9 194 797 -- 0.2 -- 14.3 0.108 1.6 0.21
351022111061801 2/25/2005 1,180 7.6 125 59.2 61.6 386 65.4 186 803 -- 0.5 -- 15.7 0.346 1.5 0.22
351022111061801 2/25/2005 1,190 7.6 127 59.5 61.51 386 65.4 188 808 calcium-sulfate 0.6 -- 14.8 0.66 1.8 0.23
351023111062002 2/13/2005 1,170 8 110 51.6 57.03 385 65.2 193 E 779 -- 0.2 -- 19.4 E 0.071 3.1 0.2
351023111062002 2/19/2005 1,160 7.6 124 57.8 60.67 384 66.1 172 E 793 -- 0.3 -- 14.9 E 0.054 1.4 0.24
351023111062002 2/19/2005 1,170 7.6 124 58.1 60.06 383 62.7 176 E 789 calcium-sulfate 0.4 -- 15.8 E 0.064 3 0.22
351023111062002 3/15/2005 1,150 7.3 127 59.2 59.61 379 64.6 -- E 791 -- <2 4.6 11.8 0.177 <2 0.21
351052110491701 10/12/1955 8,340 7.2 130 52 1,700 450 2,510 300 5,010 -- -- -- -- -- -- 0.6
351052110491701 6/6/1973 8,620 8 100 44 1,706.30 380 2,600 220 5,030 sodium-chloride -- -- -- -- -- 0.53
351053110332501 4/7/1964 8,330 7.8 190 10 1,800 1,470 1,960 82 5,470 sodium-chloride -- -- -- -- -- 1.3
351122111101301 9/7/1950 1,160 -- -- -- -- -- -- -- 753 -- -- -- -- -- -- 0.2
351142110563401 9/7/1950 1,470 -- 98 53 140 246 218 235 881 -- -- -- -- -- -- 0.2
351142110563401 9/8/1965 1,530 8.1 98.2 49.9 144.32 232 220 192 944 calcium-magnesium-chloride sulfate -- -- -- -- -- 0.15
351144111161201 9/18/1967 633 7.4 54 34 20 135 30 166 368 -- -- -- -- -- -- 0.3
351144111161201 3/7/1979 610 7.7 51 35 26.5 180 28 150 422 calcium-magnesium-chloride sulfate -- -- -- -- -- 0.3
351214111022101 4/22/2005 841 7.4 98.3 42.6 29.41 255 21.6 200 E 561 -- E 0.2 -- 16.2 E 0.061 1 0.25
351214111022101 4/22/2005 842 7.4 100 43.5 29.32 255 21.7 201 E 563 calcium-sulfate 0.2 -- 14.8 0.13 1.1 0.26
351215111021701 9/7/1950 840 -- 90 48 23 264 22 202 -- calcium-sulfate -- -- -- -- -- 0.2
351238111084101 4/22/1955 1,020 7.3 67 40 100 312 48 190 -- calcium-magnesium-chloride sulfate -- -- -- -- -- 0.4
351442110581601 9/8/1965 1,190 8 102 43 77.6 222 107 198 744 -- -- -- -- -- -- 0.2
351442110581601 4/19/1973 1,120 7.9 104 41.3 68.7 203 112 196 752 calcium-magnesium-chloride sulfate -- -- -- -- -- 0.25
351448111012701 9/8/1965 1,020 8 98.2 38 57.9 249 76 177 676 -- -- -- -- -- -- 0.2
351448111012701 10/11/1978 990 7.7 91 40 59 250 72 210 629 calcium-magnesium-chloride sulfate -- -- -- -- -- 0.2
351519111120701 11/20/1953 346 -- 41 20 4.1 11 4.5 211 199 calcium-bicarbonate -- -- -- -- -- 0.4
351525111035801 11/2/1953 846 -- 94 44 26 235 34 217 555 -- -- -- -- -- -- 0.6
351525111035801 9/8/1965 880 8.2 90.2 40.1 36.34 253 29.4 167 590 calcium-sulfate -- -- -- -- -- 0.25
351739111001501 9/7/1965 1,430 -- 98.2 49.9 132.64 226 194 205 906 -- -- -- -- -- -- 0.25
351739111001501 3/17/1966 -- -- 96.2 47.4 129.98 239 198 197 880 calcium-magnesium-chloride sulfate -- -- -- -- -- 0.15
351748110592301 9/8/1965 1,740 7.6 110 51 183.8 245 280 240 1,080 -- -- -- -- -- -- 0.3
351748110592301 3/17/1966 1,680 -- 98 50 182 260 290 220 1,040 calcium-magnesium-chloride sulfate -- -- -- -- -- 0.3
351749111003401 4/5/1959 1,400 7.4 100 46 120 240 200 230 847 -- -- -- -- -- -- 0.4
351749111003401 9/7/1965 1,470 7.8 96 50 133.3 240 200 210 908 -- -- -- -- -- -- 0.2
351749111003401 6/25/1969 1,390 7.8 93 45 142 190 200 230 860 calcium-magnesium-chloride sulfate -- -- -- -- -- 0.1
351758111000901 3/5/1958 -- 8.5 -- -- -- -- -- -- -- -- -- -- -- -- -- --
351758111000901 7/11/1960 -- 9.2 -- -- -- -- -- -- -- -- -- -- -- -- -- --
351758111000901 3/17/1966 1,380 -- 96 49 132 240 200 200 890 calcium-magnesium-chloride sulfate -- -- -- -- -- 0.2
351804111060301 8/19/1951 1,840 -- 102 49 210 258 340 209 1,080 -- -- -- -- -- -- 0.2
351804111060301 9/8/1965 1,900 8.1 92.2 46.2 218.93 251 339 141 1,130 -- -- -- -- -- -- 0.2
351804111060301 3/3/1967 1,840 -- 77.2 44.4 227.74 288 345 188 1,160 -- -- -- -- -- -- 0.2
351804111060301 11/2/1972 1,750 8.1 72.1 47.4 211.35 237 345 118 1,090 sodium-chloride -- -- -- -- -- 0.18
351815110505001 5/30/1959 8,350 7.6 430 130 1,500 910 2,600 276 5,800 -- -- -- -- -- -- --
351815110505001 5/31/1959 8,500 7.7 450 110 1,500 900 2,600 246 5,800 sodium-chloride -- -- -- -- -- --
351818110054901 4/14/1953 1,030 -- 94 44 63 230 100 208 646 -- -- -- -- -- -- 0.2
351818110054901 9/7/1965 1,380 8 102 46.2 111.05 236 185 204 870 calcium-magnesium-chloride sulfate -- -- -- -- -- 0.2
351831111054501 9/7/1965 1,100 8 90.2 42.6 71.58 216 107 206 702 calcium-magnesium-chloride sulfate -- -- -- -- -- 0.2
351930111184801 7/18/1965 756 7.5 49 53 33 221 25 182 -- calcium-sulfate -- -- -- -- -- 0.3
351930111184801 7/31/1995 740 8 54 43 34.9 210 20 -- 455 -- -- -- -- -- -- 0.2
352117111132901 7/6/1972 2,710 8.5 106 48.6 371.65 301 597 161 1,710 sodium-chloride -- -- -- -- -- 0.3
352119111132901 6/10/1951 2,610 -- 104 59 360 275 598 201 1,510 sodium-chloride -- -- -- -- -- 0.2
352226111081401 4/7/1955 2,020 7.8 83 62 260 262 395 235 1,190 sodium-chloride -- -- -- -- -- 0.2
Table 2.    Selected field parameters and water-chemistry data for Coconino aquifer groundwater sites included in this study, northeastern Arizona (U.S. Geological Survey, 2023).
*

Sodium only is reported.

References Cited

Adams, D.K., and Comrie, A.C., 1997, The North American monsoon: Bulletin of the American Meteorological Society, v. 78, no. 10, p. 2197–2213.

Anderson, M.J., Gorley, R.N., and Clarke, K.R., 2008, PERMANOVA+ for PRIMER—Guide to software and statistical methods: Plymouth, United Kingdom, PRIMER-E, Ltd., 214 p.

Bahr, C.W., 1962, The Holbrook anticline, Navajo County, Arizona, in Weber, R.H., and Peirce, H.W., eds., Guidebook of the Mogollon Rim region, east-central Arizona: New Mexico Geological Society 13th Field Conference Guidebook, p. 118–122.

Bills, D.J., and Flynn, M.E., 2002, Hydrogeologic data for the Coconino Plateau and adjacent areas, Coconino and Yavapai Counties, Arizona: U.S. Geological Survey Open-File Report 2002–265, 29 p. [Also available at https://doi.org/10.3133/ofr02265.]

Bills, D.J., Flynn, M.E., and Monroe, S.A., 2007, Hydrogeology of the Coconino Plateau and adjacent areas, Coconino and Yavapai Counties, Arizona: U.S. Geological Survey Scientific Investigations Report 2005–5222, 101 p., 4 plates. [Also available at https://doi.org/10.3133/sir20055222.]

Bills, D.J., Truini, M., Flynn, M.E., Pierce, H.A., Catchings, R.D., and Rymer, M.J., 2000, Hydrogeology of the regional aquifer near Flagstaff, Arizona, 1994–97: U.S. Geological Survey Water-Resources Investigations Report 00–4122, 142 p. [Also available at https://pubs.usgs.gov/wri/2000/4122/report.pdf.]

Blakey, R.C., 1990, Stratigraphy and geologic history of Pennsylvanian and Permian rocks, Mogollon Rim region, central Arizona and vicinity: Geological Society of America Bulletin, v. 102, no. 9, p. 1189–1217.

Clarke, K.R., Gorley, R.N., Somerfield, P.J., and Warwick, R.M., 2014, Change in marine communities—An approach to statistical analysis and interpretation (3d ed.): Plymouth, United Kingdom, PRIMER-E, Ltd., 260 p.

Conway, B.D., and Cook, J.P., 2013, Monitoring evaporite karst activity and land subsidence in the Holbrook Basin, Arizona using Interferometric Synthetic Aperture Radar (InSAR): National Cave and Karst Research Institute, p. 187–194.

Cooley, M.E., Harshbarger, J.W., Akers, J.P., Hardt, W.F., and Hicks, O.N., 1969, Regional hydrogeology of the Navajo and Hopi Indian Reservations, Arizona, New Mexico, and Utah: U.S. Geological Survey Professional Paper 521-A, 61 p.

Darton, N.H., 1910, A reconnaissance of parts of northwestern New Mexico and northern Arizona: U.S. Geological Survey Bulletin 435, 88 p.

De Cicco, L.A., Hirsch, R.M., Lorenz, D., Watkins, W.D., Johnson, M., 2022, dataRetrieval—R packages for discovering and retrieving water data available from Federal hydrologic web services, v.2.7.12., accessed May, 2022, at https://doi.org/10.5066/P9X4L3GE.

Fenneman, N.M., and Johnson, D.W., 1946, Physiographic divisions of the conterminous U.S.: U.S. Geological Survey data release. [Also available at https://doi.org/10.5066/P9B1S3K8.]

Fishman, M.J., ed., 1993, Methods of analysis by the U.S. Geological Survey National Water Quality Laboratory—Determination of inorganic and organic constituents in water and fluvial sediments: U.S. Geological Survey Open-File Report 93–125, 217 p. [Also available at https://doi.org/10.3133/ofr93125.]

Fishman, M.J., and Friedman, L.C., eds., 1989, Methods for determination of inorganic substances in water and fluvial sediments: U.S. Geological Survey Techniques of Water-Resources Investigations, book 5, chap. A1, 545 p.

Fishman, M.J., Raese, J.W., Gerlitz, C.N., and Husband, R.A., 1994, U.S. Geological Survey approved inorganic and organic methods for the analysis of water and fluvial sediments, 1954–94: U.S. Geological Survey Open-File Report 94–351, 55 p. [Also available at https://doi.org/10.3133/ofr94351.]

Gregory, H.E., 1916, The Navajo country – A geographic and hydrographic reconnaissance of parts of Arizona, New Mexico, and Utah: U.S. Geological Survey Water-Supply Paper 380, 219 p.

Harrell, M.A., and Eckel, E.B., 1939, Ground-water resources of the Holbrook region, Arizona: U.S. Geological Survey Water-Supply Paper 836-B, 105 p.

Hart, R.J., Ward, J.J., Bills, D.J., and Flynn, M.E., 2002, Generalized hydrogeology and ground-water budget for the C aquifer, Little Colorado River basin and parts of the Verde and Salt River basins, Arizona and New Mexico: U.S. Geological Survey Water-Resources Investigations Report 2002–4026, 45 p., [Also available at https://doi.org/10.3133/wri024026.]

Hem, J.D., 1985, Study and interpretation of the chemical characteristics of natural water: U.S. Geological Survey Water-Supply Paper 2254. [Also available at https://doi.org/10.3133/wsp2254.]

Hoffmann, J.P., Bills, D.J., Phillips, J.V., and Halford, K.J., 2006, Geologic, hydrologic, and chemical data from the C aquifer, near Leupp, Arizona: U.S. Geological Survey Scientific Investigations Report 2005–5280, 42 p. [Also available at https://pubs.usgs.gov/sir/2005/5280/.]

Irwin, J.H., Stevens, P.R., and Cooley, M.E., 1971, Geology of the Paleozoic rocks, Navajo and Hopi Indian Reservations, Arizona, New Mexico, and Utah: U.S. Geological Survey Professional Paper 521–C, 32 p.

Johnson, K.S., 1997, Evaporite karst in the United States: Carbonates and Evaporites, v. 12, no. 1, p. 2–14.

Jones, C.J.R., and Robinson, M.J., 2021, Groundwater and surface-water data from the C-aquifer monitoring program, northeastern Arizona, 2012–2019: U.S. Geological Survey Open-File Report 2021–1051, 34 p. [Also available at https://pubs.usgs.gov/publication/ofr20211051.]

Jones, L., Credo, J., Parnell, R. and Ingram, J.C., 2020, Dissolved uranium and arsenic in unregulated groundwater sources—Western Navajo Nation: Journal of Contemporary Water Research & Education, v. 169, no. 1, p. 27–43. [Also available at https://doi.org/10.1111/j.1936-704X.2020.03330.x.]

Lorenz, D.L., and Diekoff, A.L., 2017, smwrGraphs—An R package for graphing hydrologic data, version 1.1.2: U.S. Geological Survey Open-File Report 2016–1188, 17 p., accessed May, 2022, at https://doi.org/10.3133/ofr20161188. [Supersedes U.S. Geological Survey Open-File Report 2015–1202.]

Mann, L.J., 1976, Ground-water resources and water use in southern Navajo County, Arizona: Phoenix, Arizona Water Commission Bulletin 10, 106 p.

Mason, J.P., 2021, Groundwater, surface-water, and water-chemistry data, Black Mesa area, northeastern Arizona—2016–2018: U.S. Geological Survey Open-File Report 2021–1124, 50 p. [Also available at https://doi.org/10.3133/ofr20211124.]

Neal, J.T., and Colpitts, R.M., 1997, Richard Lake, an evaporite-karst depression in the Holbrook Basin, Arizona: Carbonates and Evaporites, v. 12, no. 1, p. 91–97.

Neal, J.T., Colpitts, R., and Johnson, K.S., 1998, Evaporite karst in the Holbrook Basin, Arizona, in Borchers, J.W., ed., Land subsidence case studies and current research: Proceedings of the Dr. Joseph F. Poland Symposium on Land Subsidence, Association of Engineering Geologists, Special Publication No. 8, p. 373–384.

Neal, J.T., and Johnson, K.S., 2002, McCauley Sinks—A compound breccia pipe in evaporite karst, Holbrook Basin, Arizona, U.S.A.: Carbonates and Evaporites, v. 17, no. 2, p. 98–106.

Neal, J.T., Johnson, K.S., and Lindberg, P., 2013, Variations in evaporite karst in the Holbrook Basin, Arizona—NCKRI Symposium 2: Proceedings of the Thirteenth Multidisciplinary Conference on Sinkholes and the Engineering and Environmental Impacts of Karst, p. 177–186.

Piper, A.M., 1944, A graphic procedure in the geochemical interpretation of water analyses: EOS, Transactions American Geophysical Union, v. 25, no. 6, p. 914–928. [Also available at http://doi.org/10.1029/TR025i006p00914.]

PRISM Climate Group, 2022, Norm91m: PRISM Climate Group, Oregon State University, accessed June 13, 2023, at http://prism.oregonstate.edu.

R Core Team, 2022, R: A language and environment for statistical computing, R Foundation for Statistical Computing: Vienna, Austria, accessed May, 2022, at https://www.R-project.org/.

Rauzi, S.L., 2000, Permian salt in the Holbrook Basin, Arizona: Arizona Geological Survey Open-File Report 00–03, 20 p., 6 plates, scale 1:250,000.

Richter, B.C., and Kreitler, C.W., 1991, Identification of sources of ground-water salinization using geochemical techniques: U.S. Environmental Protection Agency Report EPA/600/2-91/064, 259 p.

Robson, S.G., and Banta, E.R., 1995, Ground water atlas of the United States—Segment 2—Arizona, Colorado, New Mexico, Utah: U.S. Geological Survey Hydrologic Atlas 730-C, 32 p. [Also available at https://doi.org/10.3133/ha730C.]

Sorauf, J.E., and Billingsley, G.H., 1991, Members of the Toroweap and Kaibab Formations, Lower Permian, Northern Arizona, and Southwestern Utah: Rocky Mountain Association of Geologists, The Mountain Geologist, v. 28, no. 1, p. 9–24.

Stanton, J.S., Anning, D.W., Brown, C.J., Moore, R.B., McGuire, V.L., Qi, S.L., Harris, A.C., Dennehy, K.F., McMahon, P.B., Degnan, J.R., and Böhlke, J.K., 2017, Brackish groundwater in the United States: U.S. Geological Survey Professional Paper 1833, 185 p. [Also available at https://doi.org/10.3133/pp1833.]

Stiff, H.A., Jr., 1951, The interpretation of chemical water analysis by means of patterns: Journal of Petroleum Technology, v. 3, no. 10, p. 15–17. [Also available at https://doi.org/10.2118/951376-G.]

U.S. Environmental Protection Agency, 1987, Guidance for determination of underground sources of drinking water (USDWs): U.S. Environmental Protection Agency Regional Guidance 3, 3 p., accessed August 26, 2023, at https://www.epa.gov/sites/default/files/2015-09/documents/r5-deepwell-guidance3-determination-underground-sources-drinking-water-19870205.pdf.

U.S. Environmental Protection Agency, 2009, National primary drinking water regulations: U.S. Environmental Protection Agency, 7 p., accessed August 26, 2023, at https://www.epa.gov/sites/default/files/2016-06/documents/npwdr_complete_table.pdf.

U.S. Environmental Protection Agency, 2015, Secondary drinking water standards—Guidance for nuisance chemicals: U.S. Environmental Protection Agency, accessed August 26, 2023, at https://www.epa.gov/sdwa/secondary-drinking-water-standards-guidance-nuisance-chemicals.

U.S. Geological Survey, 2023, USGS water data for the nation: U.S. Geological Survey National Water Information System database, accessed May 30, 2023, at https://doi.org/10.5066/F7P55KJN.

Zaman, M., Shahid, S.A., and Heng, L., 2018, Irrigation water quality, in Guideline for salinity assessment, mitigation and adaptation using nuclear and related techniques: Springer, chap. 5, p. 113–131. [Also available at https://doi.org/10.1007/978-3-319-96190-3_5.]

Conversion Factors

U.S. customary units to International System of Units

Multiply By To obtain
inch (in.) 2.54 centimeter (cm)
inch (in.) 25.4 millimeter (mm)
foot (ft) 0.3048 meter (m)
mile (mi) 1.609 kilometer (km)
square mile (mi2) 259.0 hectare (ha)
square mile (mi2) 2.590 square kilometer (km2)
cubic foot (ft3) 28.32 cubic decimeter (dm3)
cubic foot (ft3) 0.02832 cubic meter (m3)
foot per year (ft/yr) 0.3048 meter per year (m/yr)
cubic foot per second (ft3/s) 0.02832 cubic meter per second (m3/s)
inch per year (in/yr) 25.4 millimeter per year (mm/yr)

International System of Units to U.S. customary units

Multiply By To obtain
centimeter (cm) 0.3937 inch (in.)
millimeter (mm) 0.03937 inch (in.)
meter (m) 3.281 foot (ft)
kilometer (km) 0.6214 mile (mi)
hectare (ha) 0.003861 square mile (mi2)
square kilometer (km2) 0.3861 square mile (mi2)
cubic decimeter (dm3) 0.03531 cubic foot (ft3)
cubic meter (m3) 35.31 cubic foot (ft3)
meter per year (m/yr) 3.281 foot per year ft/yr)
cubic meter per second (m3/s) 35.31 cubic foot per second (ft3/s)
millimeter per year (mm/yr) 0.03937 inch per year (in/yr)

Temperature in degrees Fahrenheit (°F) may be converted to degrees Celsius (°C) as follows:

°C = (°F – 32) / 1.8.

Temperature in degrees Celsius (°C) may be converted to degrees Fahrenheit (°F) as follows:

°F = (1.8 × °C) + 32.

Datums

Vertical coordinate information is referenced to the North American Vertical Datum of 1988 (NAVD 88).

Horizontal coordinate information is referenced to the North American Datum of 1983 (NAD 83).

Supplemental Information

Specific conductance is given in microsiemens per centimeter at 25 degrees Celsius (µS/cm at 25 °C).

Concentrations of chemical constituents in water are given in either milligrams per liter (mg/L) or micrograms per liter (µg/L).

Abbreviations

EPA

U.S. Environmental Protection Agency

MCL

maximum contaminant level

NWIS

U.S. Geological Survey National Water Information System

PCA

principal component analysis

SMCL

secondary maximum contaminant level

TDS

total dissolved solids

USGS

U.S. Geological Survey

Tacoma and Moffett Field Publishing Service Centers

Manuscript approved for publication April 23, 2025

Edited by Jeff Suwak and Vanessa Ball

Illustration support by JoJo Mangano

Layout and design by Luis Menoyo

Disclaimers

Any use of trade, firm, or product names is for descriptive purposes only and does not imply endorsement by the U.S. Government.

Although this information product, for the most part, is in the public domain, it also may contain copyrighted materials as noted in the text. Permission to reproduce copyrighted items must be secured from the copyright owner.

Suggested Citation

Jones, C.J.R., 2025, Assessment of water chemistry of the Coconino aquifer in northeastern Arizona: U.S. Geological Survey Scientific Investigations Report 2025–5038, 30 p., https://doi.org/10.3133/sir20255038.

ISSN: 2328-0328 (online)

Study Area

Publication type Report
Publication Subtype USGS Numbered Series
Title Assessment of water chemistry of the Coconino aquifer in northeastern Arizona
Series title Scientific Investigations Report
Series number 2025-5038
DOI 10.3133/sir20255038
Publication Date July 03, 2025
Year Published 2025
Language English
Publisher U.S. Geological Survey
Publisher location Reston, VA
Description viii, 30 p.
Country United States
State Arizona
Other Geospatial Coconino aquifer
Online Only (Y/N) Y
Additional publication details