Fluvial Sediment Dynamics in the Shoshone River and Tributaries Around Willwood Dam, Park County, Wyoming

Scientific Investigations Report 2025-5077
Prepared in cooperation with the Wyoming Department of Environmental Quality
By: , and 

Links

Abstract

Sedimentation affects many of the aging reservoirs in the United States. Dams and water diversions from rivers have been central elements of infrastructure supporting agricultural irrigation in the arid and semiarid regions of the Western United States for more than a century. The Willwood Irrigation District diversion dam (hereafter referred to as “Willwood Dam”) in Park County, Wyoming, is approximately 12 miles northeast of Cody, Wyo.; has a structural height of 70 feet; and impounds the Shoshone River for diversion into the Willwood Canal. Willwood Dam is part of a larger irrigation scheme supported by water storage in the much larger Buffalo Bill Dam, which is approximately 20 miles upstream. In October 2016, renovation construction activities at Willwood Dam and the Willwood Canal caused an unplanned evacuation of nearly 96,000 cubic yards of fine sediment.

The fine sediment release in 2016 raised concerns that ongoing sediment management at Willwood Dam could impose limits on the long-term health of the aquatic ecosystem and fish populations. The U.S. Geological Survey, in cooperation with Wyoming Department of Environmental Quality and Willwood Work Groups 2 and 3, initiated an investigation of the dynamics of sediment transport in the Shoshone River and selected tributaries between Buffalo Bill Dam and Willwood Dam. The goal of the study was to quantify sediment transport into and out of Willwood Dam on an annual, seasonal, and event basis to better understand the relative quantities of sediment coming from natural sources and human activities on the landscape. The study ran from March 2019 through October 2021 and used observations of streamflow, turbidity, and acoustic backscatter collected at streamgages upstream and downstream from Willwood Dam to quantify suspended-sediment loads into and out of the dam during irrigation and fallow seasons, precipitation-runoff events, and deliberate sediment releases. Each tributary’s relative contribution to the sediment load upstream from Willwood Dam was examined using discrete measurements of suspended-sediment concentration and bedload during irrigation and fallow seasons, precipitation events, and stable conditions.

Analysis of daily precipitation and temperature data indicated that conditions in the study area during the 2019 agricultural year were wetter and colder than period of record normal, and drier and near normal temperatures for the 2020 and 2021 agricultural years. Not all sediment load records between 2019 and 2021 are complete because of rejected observations (outliers), instrument failures or fouling, and instrument removal for calibrations.

Statistical modeling of suspended-sediment concentration using paired values of turbidity and acoustic backscatter produced four models that, after refinement, had coefficients of determination indicating that more than 84 percent of the variance was explained by either turbidity or acoustic backscatter. A system of rules was developed to select the model predictions based on the seasonal operations of Willwood Dam, assumptions about the grain sizes mobilized during these operations, and assumed accuracy of the models at the downstream streamgage (Shoshone River below Willwood Dam, near Ralston, Wyo. [streamgage 06284010]) under different operational conditions. The sediment budget between upstream and downstream estimates of loads was interpreted using the mean predicted values bound by their respective model prediction intervals. When mean predicted loads of one streamgage were contained in the prediction intervals of the other streamgage, and vice-versa, difference in the sediment budget were interpreted as “indeterminate.”

Modeled sediment load balances demonstrated the depositional and erosional behaviors expected from the conceptual model of dam operations whereby sediment tends to accumulate during irrigation seasons when the dam is spilling over the top, and sediment tends to evacuate during the fallow seasons when it is flowing through the sluice gates at the base of the dam. The sediment load calculations using the rules-based model criteria indicated that between 14,200 and 380,000 tons of suspended sediment moved through the Shoshone River around Willwood Dam during the irrigation seasons of 2019, 2020, and 2021; 380,000 tons of suspended sediment were transported during the cool, wet year of 2019, and 14,200 tons of suspended sediment were transported in 2020, which was relatively dry. During fallow seasons 2019, 2020, and 2021, which had fewer complete records, between 1,140 and 106,000 tons of suspended sediment was estimated to have moved through the river.

For all seasons except fallow season 2022, the models estimated that more sediment was released from the dam than entered the dam, but the modeled mean loads at each streamgage were nearly always within the prediction intervals of each other, making the sediment balance indeterminant. Examination of suspended-sediment loads during irrigation seasons indicated that between 65 and 85 percent of fine sediment was transported during annual high flows and storm events, with the remainder transported during steady, lower streamflows. Examination of suspended loads during fallow seasons indicated that deliberate sediment releases through Willwood Dam accounted for between 39 and 67 percent of the total sediment moved during the fallow seasons. Deliberate sediment releases from Willwood Dam had estimated net exports of between 1,360 and 22,400 tons.

Between August 2017 and July 2023, suspended-sediment concentration and bedload sediment samples were collected from 9 tributaries to the Shoshone River during 137 sampling events, including stable and precipitation-runoff conditions. During irrigation season precipitation events, the mean total sediment yields ranged from 0.33 to 9.51 tons per day per square mile; during fallow season precipitation events, the mean total yields ranged from 0.04 to 0.95 ton per day per square mile. The mean total sediment yield per unit area across all samples at each tributary site ranged from 0.26 to 3.08 tons per day per square mile. Bedload was a minor fraction of the total load, constituting a mean of 4 percent across all samples; 3 and 6 percent for events and nonevents, respectively, during irrigation season; and 3 and 1 percent for events and nonevents, respectively, during the fallow season. With the exception of one tributary, Dry Creek, these mean yield values were within the range of watershed-scale background sediment yield values estimated from reservoir surveys and previous suspended-sediment studies.

Imagery from irrigation seasons 2012, 2015, 2017, 2019, and 2022 was used to determine the planimetric backwater extent of the pool area in the Shoshone River behind Willwood Dam to identify any changes in sediment storage. Active river channel widths in the Shoshone River upstream from Willwood Dam were all similar between years except 2015, which was determined to be statistically different from all other years. Bathymetric data taken in the pool behind Willwood Dam during three different surveys between November 2017 and April 2022 indicated no statistically significant differences in bed elevations between the years. Results from the planimetric and bathymetric survey data provide multiple lines of evidence indicating that sediment did not accumulate behind the dam within the error of the methods used.

Examination of how precipitation affects sediment transport in the Shoshone River upstream from Willwood Dam indicated that accumulated rainfall from the natural runoff events captured during the study period varied from a trace to as much as 4.26 inches, with associated predicted suspended-sediment loads varying from 112 to 232,000 tons of suspended sediment. The behavior of the sediment loads relative to accumulated precipitation did not appear to change depending on irrigation or fallow season. A model of suspended-sediment concentrations relative to the 2-day accumulated precipitation indicated that suspended-sediment concentrations in the Shoshone River upstream from Willwood Dam increased exponentially for accumulations of 0.3 inch or more; such storms accounted for 10 percent or less of precipitation events observed during the 1981 to 2018 period of record.

The gaps in records, precision of the instrumentation, and large variation in grain sizes in suspended-sediment mixtures downstream from the dam made closing the sediment budgets for most seasons unattainable. The biggest recent change in sediment storage measured using the planimetric area of deposits behind Willwood Dam took place between 2015 and 2017. The main event between these two measurements was the installation of new Willwood Canal gates in October 2016, which resulted in the large unplanned sediment release. Because the sediment budgets were nearly always indeterminate and the planimetric and bathymetric data indicated little change in the bed and bank material, it is likely that the change in sediment storage behind the dam during the study period was small relative to the precision of the statistical models and other uncertainties.

This body of evidence suggests that, averaged during the 3-year study period, no major changes in storage took place, and that the current operations may be keeping storage at near-equilibrium. This condition could have been initiated because the middle sluice gate has now been operational since 2014, and the sediment release in October 2016 evacuated a large amount of legacy sediment from storage. Although the uncertainties are large, sluicing events allow for controlled releases of sediment that contributed to the near equilibrium conditions observed over an annual basis during this study.

Suggested Citation

Alexander, J.S., Brown, H., Eddy-Miller, C.A., Burckhardt, J., Burckhardt, L., Ellison, C., McIntyre, C., Moger, T., Patterson, L., Tavelli, C., Waterstreet, D., and Williams, M., 2025, Fluvial sediment dynamics in the Shoshone River and tributaries around Willwood Dam, Park County, Wyoming: U.S. Geological Survey Scientific Investigations Report 2025–5077, 70 p., https://doi.org/10.3133/sir20255077.

ISSN: 2328-0328 (online)

Study Area

Table of Contents

  • Acknowledgments
  • Abstract
  • Introduction
  • Methods
  • Fluvial Sediment Dynamics in the Shoshone River around Willwood Dam
  • Discussion
  • Summary
  • References Cited
  • Appendix 1. Suspended-Sediment Surrogate Continuous Monitoring Records 
  • Appendix 2. Site Monitor Representation of Channel Suspended-Sediment Conditions 
  • Appendix 3. Comparison of Pump and Depth-Integrated Suspended-Sediment Samples 
Publication type Report
Publication Subtype USGS Numbered Series
Title Fluvial sediment dynamics in the Shoshone River and tributaries around Willwood Dam, Park County, Wyoming
Series title Scientific Investigations Report
Series number 2025-5077
DOI 10.3133/sir20255077
Publication Date August 29, 2025
Year Published 2025
Language English
Publisher U.S. Geological Survey
Publisher location Reston, VA
Contributing office(s) Wyoming-Montana Water Science Center
Description Report: x, 70 p.; Data Release; Dataset
Country United States
State Wyoming
County Park County
Other Geospatial Shoshone River and tributaries around Willwood Dam
Online Only (Y/N) Y
Additional Online Files (Y/N) N
Additional publication details