Simulated response of the Sparta Aquifer to outcrop area recharge augmentation, southeastern Arkansas
Links
- Document: Report (pdf)
- Plates:
- Download citation as: RIS | Dublin Core
Abstract
Recharge augmentation by construction of infiltration impoundments is a potential means of increasing aquifer water levels and aquifer yield that is under consideration for the Sparta aquifer in southeastern Arkansas. The aquifer is a major water resource for municipal, industrial, and agricultural uses, and approximately 287 million gallons per day was pumped from the aquifer in Arkansas in 1995; this is double the amount pumped in 1975. Historically, the Sparta aquifer has provided abundant water of high quality. In recent years, however, the demand for water in some areas has resulted in withdrawals from the Sparta that significantly exceed recharge to the aquifer, and considerable declines have occurred in the potentiometric surface. To better manage the Sparta aquifer, water users in Arkansas are evaluating and implementing a variety of management practices and assessing alternative, surface-water sources to reduce stress upon the Sparta aquifer. One approach to managing and maximizing use of the Sparta aquifer is augmenting recharge to the aquifer by construction of infiltration lakes or canals within the recharge area. The basic concept of augmented recharge is simply to increase the amount of water being introduced into the aquifer so that more water will be available for use. Ground-water flow model simulations were conducted to assess the effectiveness of constructing lakes or canals to augment recharge. Results show that construction of five new lakes in the Sparta recharge area upgradient from major pumping centers or construction of a series of canals along the length of the recharge area yield notable benefit to aquifer conditions when compared with simulations entailing no augmentation of recharge. Augmentation of recharge in the Sparta aquifer with emplacement of lakes provides slight increase to aquifer water levels. The presence of the lakes increased simulated aquifer water levels 0.5 foot or more across a broad area comprising all or a substantial part of 19 counties after the 30-year simulation period. Substantial increases of 5 feet or greater are limited to a smaller area proximal to the lakes. Increases of 5 feet or more are seen in El Dorado, Pine Bluff, and Stuttgart. The positive effect of the lakes on aquifer water levels is rapidly realized after emplacement of the lakes. For example, in the El Dorado area more than 3 feet of a total of 8 feet of water-level increase is seen in the first 5 years of the simulation; in the Pine Bluff area 9 feet of a total of 16 feet of increase occurs within 5 years. Sustainable yield from the aquifer could be expected to be increased within the zone of influence of the lakes. Augmentation of recharge in the Sparta aquifer with emplacement of canals provides considerable increase of aquifer water levels. The zone of influence in the aquifer with canal-augmented recharge extends from the recharge area eastward to the Mississippi River. Aquifer water levels exhibit an increase of 5 feet or more across a broad area comprising all or a substantial part of 15 counties. Increases of 20 feet or more are seen in El Dorado, Pine Bluff, and Stuttgart. The amount of water moving into the aquifer is substantially increased under this scenario, and the amount of water removed from storage is decreased, thereby, increasing aquifer conditions considerably. Sustainable yield from the aquifer could be expected to be greater within the zone of influence of the canals as compared to either the scenario without recharge augmentation or recharge augmentation with lakes. The effect of the canal on aquifer water levels is rapidly realized after emplacement of the canals. For example, in the El Dorado area, 22 feet of a total of 30 feet of increase is seen in the first 5 years of the simulation; in the Pine Bluff area, 15 feet of a total of 24 feet of increase occurs within 5 years. As constructed, the model simulations imply that any lakes or canals constructed would maintain exce
Study Area
Publication type | Report |
---|---|
Publication Subtype | USGS Numbered Series |
Title | Simulated response of the Sparta Aquifer to outcrop area recharge augmentation, southeastern Arkansas |
Series title | Water-Resources Investigations Report |
Series number | 2001-4039 |
DOI | 10.3133/wri014039 |
Year Published | 2001 |
Language | English |
Publisher | U.S. Geological Survey |
Description | Report: iii, 14 p.; 2 Plates: 16.80 x 15.40 inches and 16.79 x 15.36 inches |
Country | United States |
State | Arkansas |
Online Only (Y/N) | N |
Additional Online Files (Y/N) | N |
Google Analytic Metrics | Metrics page |