The effects of coal-mine drainage on the water resources of the Tradewater River basin, in the Western Coal Field region of Kentucky, were evaluated (1) by synthesis and interpretation of 16 years of daily conductance data. 465 chemical analyses covering an 18-year period, 28 years of daily discharge data, and 14 years of daily suspended-sediment data from the Tradewater River at Olney and (2) by collection, synthesis, and interpretation of chemical and physical water-quality data and water-quantity data collected over a 2-year period from mined and nonmined sites in the basin.
Maximum observed values of 13 chemical and physical water-quality parameters were three to 300 times greater in the discharge from mined subbasins than in the discharge from nonmined subbasins. Potassium, chloride, and nitrate concentrations were not significantly different between mined and nonmined areas.
Mean sulfate loads carried by the Tradewater River at Olney were about 75 percent greater for the period 1955-67 than for the period 1952-54. Suspended-sediment loads at Olney for the November-April storm-runoff periods generally vary in response to strip-mine coal production in the basin above Olney. Streamflow is maintained during extended dry periods in mined subbasins after streams in nonmined subbasins have ceased flowing.
Some possible methods of reducing the effects of mine drainage on the streams are considered in view of a geochemical model proposed by Ivan Barnes and F. E. Clarke. Use of low-flow-augmenting reservoirs and crushed limestone in streambeds in nonmined areas seems to be the most promising method for alleviating effects of mine drainage at the present time. Other aspects of the water resources such as variability of water quantity and water quality in the basin are discussed briefly.