Introduction to the General Mojave Changing Climates
& Ancient Lakes |
Carbonate Rocks and Associated LandformsIn the Mojave National Preserve, carbonate sedimentary rocks of Proterozoic and Paleozoic age (consisting of limestone and dolostone) crop out throughout the Clark Mountains, the Mescal Mountains, in the northern Ivanpah Range, in the central portion of Providence Mountains, and elsewhere. Carbonate rocks originally form from limey sediments consisting of the calcareous skeletal remains of algae and invertebrate shell material or precipitates directly from agitated, warm seawater (as on a shallow continental shelf in a warm climate). Most ancient limestones formed from planktonic algae, but in late Paleozoic time coralline reefs became significant producers of carbonate sediments. Limestone consists dominantly of the mineral Calcite-CaCO3, whereas dolostone consists dominantly of the mineral dolomite-CaMg(CO3)2. Dolomite is typically a secondary mineral replacement of original calcite material. Ancient carbonate rocks like those in the Mojave region tend to be enriched in dolomite. Below are examples of common fossiliferous carbonate rocks of Paleozoic age from the Mojave region.
In contrast to other types of rocks, carbonate rocks tend to be fairly resistant to erosion in arid climate conditions. The ancient carbonate rocks in the Mojave region are typically both dense and brittle and tends to be heavily fractured at the surface. At depth, fractures in carbonate tend to heal over time as the rock gradually flows under extreme pressure, and as calcite and other minerals precipitate in crevasses over time. Throughout the desert southwest, deep canyons carved into carbonate rock display collapse breccia, which are massive surficial deposits that consist of broken fragments of limestone and dolostone tightly cemented in a carbonate matrix.
Carbonate rocks dissolve in freshwater, with calcite being more soluble than dolomite. With each precipitation event, traces of carbonate material will dissolve and migrate with flowing water. Dissolution occurs along fractures in the subsurface producing caverns. As water evaporates at the surface, calcite will precipitate again, cementing sediments on alluvial fans to form a durable calcareous crust (called caliche). Calcite is a major component of playa mud deposits. Varieties of freshwater limestone deposits called tufa and travertine form around springs and in former wave-influenced lake shore zones. In caverns, travertine deposits are called speleothems (which include stalagmites, stalactites, columns, flowstone, and other features).
In the Mojave region, alluvial deposits derived from areas with carbonate bedrock tend to consist of blocky, unevenly sorted sediments. In many areas chert layers and metasandstone layers occur interbedded within the bedrock. These more siliceous materials tend to be more resistant to both mechanical and chemical weathering forces, and as a result, alluvial surfaces and sediments down slope from carbonate rock source areas tend to be enriched in these associated siliceous materials. Carbonate mountains are the highest and steepest without exception. These areas are prone to stronger flood forces, bigger canyons, more precipitation, coarser fans, steeper fans, and hense, greater risk for debris flow activity. |
Continue to the Granitic Rocks and Associated Landforms page... | ||
USGS Western Region Geology and Geophysics Science Center |