Green Infrastructure in the Great Lakes—Assessment of Performance, Barriers, and Unintended Consequences
Links
- Document: Report (104 MB pdf) , HTML , XML
- Tables:
- Download citation as: RIS | Dublin Core
Abstract
The Great Lakes Basin covers around 536,393 square kilometers, and the Great Lakes hold more than 5,400 cubic miles of water, accounting for more than 20 percent of the world’s fresh surface water supply. The Great Lakes provide a source of drinking water to tens of millions of people in Canada and the United States and support one of the most diverse ecosystems in the world. Increasing urbanization combined with aging infrastructure and more extreme storm events because of changing weather patterns creates stormwater management challenges for communities across the Great Lakes region. A variety of green infrastructure (GI) practices, designed to decrease runoff and improve water quality, have been implemented throughout the region in response to these challenges; however, implementation often remains limited to local efforts and with little coordination among various levels of government because of, at least in part, a lack of clear standards for stormwater, limited funding, and a general uncertainty in the type and expected performance of these practices. City planners, engineers, and political leaders often see GI investment as riskier than other alternatives despite studies that determined, in most cases, practices can either reduce or not affect costs.
This report summarizes selected published reports and data sources from studies done in Great Lakes states and compares the measured effects of various GI practices and their applicability in different settings around the Great Lakes. By summarizing selected published reports and data sources from studies done in Great Lakes states, this report provides foundational information for U.S. Geological Survey scientists and their local and national partners to assess the ability of GI to reduce stormwater runoff in Great Lakes urban areas. GI includes a variety of stormwater management techniques designed to mimic natural hydrologic processes like infiltration and evapotranspiration, which can decrease the volume of water running into sewers and streams. It can also improve water quality by trapping sediment, nutrients, and other contaminants. A variety of landscape practices can be incorporated into urban areas as GI, but the discussion here is limited to vegetated basins, vegetated channels, permeable pavement, urban tree canopy, and green roofs. Other types of GI, such as downspout disconnection, rainwater harvesting, and wet and dry detention basins were not included because hydrologic function and associated components are not widely monitored or evaluated in literature.
Suggested Citation
Baker, N.T., Sullivan, D.J., Selbig, W.R., Haefner, R.J., Lampe, D.C., Bayless, R., and McHale, M.R., 2022, Green infrastructure in the Great Lakes—Assessment of performance, barriers, and unintended consequences: U.S. Geological Survey Circular 1496, 70 p., https://doi.org/10.3133/cir1496.
ISSN: 2330-5703 (online)
Study Area
Table of Contents
- Acknowledgments
- Abstract
- Introduction
- Purpose and Scope
- Great Lakes Region
- The Problem with Urban Stormwater in the Great Lakes Region
- Green Infrastructure Practices
- Restoration of Hydrologic Cycle
- Restoration of Human and Ecological Beneficial Uses
- Factors that Affect Performance
- Unintended Consequences
- Research Needs
- Summary
- References Cited
- Appendix 1. Supplemental Table
Publication type | Report |
---|---|
Publication Subtype | USGS Numbered Series |
Title | Green infrastructure in the Great Lakes—Assessment of performance, barriers, and unintended consequences |
Series title | Circular |
Series number | 1496 |
DOI | 10.3133/cir1496 |
Year Published | 2022 |
Language | English |
Publisher | U.S. Geological Survey |
Publisher location | Reston, VA |
Contributing office(s) | New York Water Science Center, Wisconsin Water Science Center, Ohio-Kentucky-Indiana Water Science Center, Upper Midwest Water Science Center |
Description | Report: ix, 70 p.; 1 Table |
Country | United States |
State | Illinois, Indiana, Michigan, Minnesota, New York, Ohio, Pennsylvania, Wisconsin |
Online Only (Y/N) | Y |
Additional Online Files (Y/N) | Y |
Google Analytic Metrics | Metrics page |